

- (1) What is the nuclear binding energy per nucleon in joules, for ${}^{25}{}_{12}Mg$ (atomic mass=24.985839amu, and ${}^{1}{}_{1}H = 1.007825amu$, ${}^{1}{}_{0}n = 1.008665amu$). If 1 amu = 1.6605x10⁻²⁷kg. (c speed of light = 3x10⁸ms⁻²). (4 marks)
- (2) For the reaction $SbCl_5(g) \iff SbCl_3(g) + Cl_2(g)$ (4marks) $\Delta G^{\circ}_f (SbCl_5) = -334.34 \text{ kJ/mol}; \Delta G^{\circ}_f (SbCl_3) = -301.25 \text{ kJ/mol}$ $\Delta H^{\circ}_f (SbCl_5) = -394.34 \text{ kJ/mol}; \Delta H^{\circ}_f (SbCl_3) = -313.80 \text{ kJ/mol}$
 - a. Calculate ΔG° and ΔH° at 298 K and 1 atm pressure.
 - b. Will this reaction proceed spontaneously at 298 K and 1 atm pressure?
 - c. Calculate the equilibrium constant for this reaction at 298 K.

(3) Given the followings;

 $Fe^{3+} + e^{-} \Rightarrow Fe^{2+}$ $E^{0} = +0.77V$

 $Ag^+ + e^- \rightleftharpoons Ag$ $E^\circ = +0.799V$

- i) Write the notation for the cell utilizing these half-reactions.
- ii) Write the equation for the cell reaction.
- iii) Calculate E° for the cell.
- iv) Determine ΔG° .
- (4) When an automobile engine starts, the metal parts immediately begin to absorb heat released during the combustion of gasoline. How much heat will be absorbed by a 165 kg iron engine block when the temperature rises from 15.7°C to 95.7°C ? [The specific heat of iron is 0.489 J/g.°C.] (2marks)
- (5) The rate equation for the reaction: A + B →P is expressed in terms of [A] only. The rate of disappearance of A is 0.016 mol L⁻¹s⁻¹ when [A] = 0.4mol.L⁻¹. Calculate the value of k if the reaction is:
 - i) First order in A, ii) Zero order in A. (2 marks)

(4 marks)

(6)	The data below were obtained for the reaction	(4marks)
	$2NO + H_2 \rightarrow N_2O + H_2O.$	

<u>Expt. #</u>	[NO] _o	$[H_2]_o$	Initial rate
1	0.021	0.065	1.46 M/min
2	0.021	0.260	1.46 M/min
3	0.042	0.065	5.84 M/min

i) Determine the rate law for this reaction.

ii) The rate constant, k.

(7) The mass percentage of an aqueous solution of urea (CON_2H_4) is 25%.

- i) What is the mole fraction of urea.
- ii) The molality of urea.

(2marks)

- (8) If the measured voltage of the cell (Ecell.) $Zn(s) | Zn^{2+}(aq) | Ag^{+}(aq) | Ag(s)$ is 1.37 V when the concentration of Zn^{2+} ion is 0.010 M, what is the Ag⁺ ion concentration? If $E^{0}_{cell} = 1.56$ V. (2marks)
- (9) A solution that contains 13.2 g of solute in 250 g of CCl₄ freezes at -33.0 °C, if $k_f CCl_4 = 29.8$ °C/m and the normal freezing point of CCl₄ is -22.8°C. Calculate the molecular weight of the solute. (3marks)
- (10) The reaction: 2NO (g) \rightarrow N₂ (g) + O₂ (g) is second order in NO. The rate constant is 0.286 L mol⁻¹.s⁻¹ at 1100°C and 0.500 L mol⁻¹s⁻¹ at 1200°C. What is the activation energy of the reaction. (2marks)
- (11) Aluminum metal is formed by the electrolysis of Al₂O₃ in molten cryolite.
 i) How many grams of Al are produced when 6.50 × 10³ C pass through the cell?

ii) How many minutes are required to form 10.0 g of Al using a current of 30 A? (3marks)

(12) Hydrogen peroxide (H₂O₂) decomposes according to the equation: $H_2O_2(l) \rightarrow H_2O(l) + (1/2)O_2(g)$

Calculate K_p for this reaction at 25°C.

$$(\Delta H^\circ = -98.2 \text{ kJ/mol}, \Delta S^\circ = 70.1 \text{ J/K} \cdot \text{mol})$$

(13) Ozone (O₃) in the atmosphere can reaction with nitric oxide (NO): $O_3(g) + NO(g) \longrightarrow NO_2(g) + O_2(g).$

If ΔH_f for NO, NO₂ and O₃ are 90.4, 33.85, and 163.4 in kJ/mol, respectively ,and S° for O₃, NO, NO₂ and O₂ are 110.9, 210.6, 240.5 and 205 in kJ/mol respectively. Calculate: i) ΔH° , ii) ΔS° iii) ΔG° , for the above reaction.

- (14) An aqueous solution of potassium nitrate made from 45.0g KNO₃ and 295 g of water. Calculate for the solution:
 - i) the percent by mass of KNO₃,
 - ii) molality(m)
- (15) Determine the equilibrium constant Kp at 25 °C for the reaction $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

$$[\Delta G^{o}_{f} NH_{3}(g) = \Box 16.6 \text{ kJ/mol}]$$

- (16) Benzene, C₆ H₆, and Toluene, C₇H₈, form ideal solution at 60 $^{\circ}$ C, if P⁰_B = 0.51atm. and P⁰_T = 0.18 atm. What is the vapor pressure of solution, containing 6.5g of Benzene and 23.0g of Toluene?
- (17) Calculate E°cell for the following reaction: $2Au (s) + 3Ca^{2+}(aq) \rightarrow 2Au^{3+}(aq) + 3Ca (s);$ If E°Au³⁺/Au = 1.4 V and E°Ca⁺⁺/Ca = -2.866 V
- (18) The half-life of ⁹⁰Sr is 29 years. What fraction of the atoms in a sample of ⁹⁰Sr would remain 175 years later?
 - (19) What is the osmotic pressure of a solution that contains 13.7 g of propyl alcohol (C₃H₇OH) dissolved in enough water to make 500 mL of solution at 27°C?
 - (20) Consider the reaction $3A(g) \rightarrow B(s) + 3C(g)$, $\Delta H^{\circ} = -200.0$ kJ. Calculate the ΔE° for the reaction in kJ