

Physical Properties of Solutions

 Chapter 12
A solution is a homogenous mixture of 2 or more substances

The solute is(are) the substance(s) present in the smaller amount(s)

The solvent is the substance present in the larger amount

A saturated solution contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature.

An unsaturated solution contains less solute than the solvent has the capacity to dissolve at a specific temperature.

A supersaturated solution contains more solute than is present in a saturated solution at a specific temperature.

Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate.

Three types of interactions in the solution process:

- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction

"like dissolves like"

Two substances with similar intermolecular forces are likely to be soluble in each other.

- non-polar molecules are soluble in non-polar solvents
CCl_{4} in $\mathrm{C}_{6} \mathrm{H}_{6}$
- polar molecules are soluble in polar solvents
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $\mathrm{H}_{2} \mathrm{O}$
- ionic compounds are more soluble in polar solvents

NaCl in $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} ($)$

Concentration Units

The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.

Percent by Mass

$\%$ by mass $=\frac{\text { mass of solute }}{\text { mass of solute }+ \text { mass of solvent }} \times 100 \%$

$$
=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \%
$$

Mole Fraction (X)

$$
X_{\mathrm{A}}=\frac{\text { moles of } \mathrm{A}}{\text { sum of moles of all components }}
$$

Concentration Units Continued

Molarity (M)

$\boldsymbol{M}=\frac{\text { moles of solute }}{\text { liters of solution }}$

Molality (m)

$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent } \mathrm{kg} \text {) }}
$$

EX.

100 g of an aqueous solution containing 5 g of NaCl ; what is the mass percentage of NaCl in the solution?

Ans.

Mass \% of $\mathrm{NaCl}=(5 / 100) \times 100$

$$
=5 \%
$$

Ans. 3.1

$$
\mathrm{X}_{\mathrm{He}}=\mathrm{n}_{\mathrm{He}} / \mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{O} 2} \mathrm{X}_{\mathrm{O} 2}=\mathrm{n}_{\mathrm{O} 2} / \mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{O} 2}
$$

First we find the number of mole of each component present in solution , n_{He} and $\mathrm{n}_{\mathrm{O} 2}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{He}}=\text { mass } \mathrm{He} / \mathrm{Mw}, \mathrm{n}_{\mathrm{He}}=2.0 \mathrm{~g} / 4.0 \mathrm{~g} \mathrm{~mol}^{-1}=0.5 \text { mole } \mathrm{He} \\
& \mathrm{n}_{\mathrm{O} 2}=\text { mass of } \mathrm{O}_{2} / \mathrm{Mw}, \mathrm{n}_{\mathrm{O} 2}=4.0 \mathrm{~g} / 32 . \mathrm{g} \mathrm{~mol}^{-1}=0.125{\text { mole } \mathrm{O}_{2}} \\
& \mathrm{X}_{\mathrm{He}}=0.5 / 0.5+0.125 \quad \mathrm{X}_{\mathrm{O} 2}=0.125 / 0.5+0.125=0.2 \\
& \text { Note: } \quad=0.8 \\
&
\end{aligned}
$$

What is the molality of CuSO_{4} solution when 20 g of CuSO_{4} dissolved in 100 g of water?
$\mathrm{Cu}=63.5, \mathrm{~S}=32, \mathrm{O}=16$

Answer

$$
\begin{aligned}
& \mathrm{m}=\mathrm{n} \text { solute } / \mathrm{Kg} \text { of solvent } \\
& \mathrm{n} \text { of } \mathrm{CuSO}_{4}=\text { mass } / \mathrm{MW}=20 \mathrm{~g} / 159.5 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =0.125 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{m}=\mathrm{n} \mathrm{CuSO}_{4} / \text { Mass of } \mathrm{H}_{2} \mathrm{O}(\mathrm{Kg}) \\
\mathrm{m}=0.125 / 0.1=1.25 \mathrm{~m}
\end{gathered}
$$

What are the mole fractions of solute and solvent in 1.00 m aqueous solution?

Answer : $\mathrm{m}=\mathrm{n}$ solute $/ \mathrm{Kg}$ of solvent

$$
1 \mathrm{~m}=1 \mathrm{~mol} / 1 \mathrm{Kg} \text {, So mass of water }=1000 \mathrm{~g}
$$

$$
\text { The } \mathrm{MW} \text { of } \mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol}
$$

No. of mole of $\mathrm{H}_{2} \mathrm{O}=1000 \mathrm{~g} / 18 \mathrm{~g} / \mathrm{mol}=55.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \mathrm{n}_{\text {solute }}(\text { no. of mole of solute })=1 \mathrm{~mol} \\
& \mathrm{n}_{\text {H2O }}=55.6 \mathrm{~mol} \\
& \mathrm{X}_{\text {solute }}=1 /(1+55.6)=0.018 \\
& X_{\text {H2O }}=55.6 /(1+55.6)=0.982
\end{aligned}
$$

What is the molality of a $5.86 \mathrm{Methanol}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

 solution whose density is $0.927 \mathrm{~g} / \mathrm{mL}$?moles of solute

$\boldsymbol{m}=\frac{\text { mass of solvent (kg) }}{\text { mater }}$

Assume 1 L of solution: M = number of moles / Volume (L) $5.86 \mathrm{M}=$ number of moles $/ 1 \mathrm{~L}$
number of moles of ethanol $=5.86$ moles
Mass of ethanol $=5.86 \times 46=270 \mathrm{~g}$ ethanol
Mass of solution $=1000 \mathrm{ml} \times 0.927 \mathrm{~g} / \mathrm{ml}=927 \mathrm{~g}$
mass of solvent $=$ mass of solution - mass of solute

$$
\boldsymbol{m}=\frac{\begin{array}{c}
=927 \mathrm{~g}-270 \mathrm{~g}=657 \mathrm{~g}=0.657 \mathrm{~kg} \\
\text { moles of solute }
\end{array}}{\text { mass of solvent }(\mathrm{kg})}=\frac{5.86 \mathrm{moles}_{2} \mathrm{H}_{5} \mathrm{OH}}{0.657 \mathrm{~kg} \text { solvent }}=8.92 \mathrm{~m}
$$

Temperature and Solubility

Solid solubility and temperature

 solsidilibjilitycrefasolisdelith décщessigghi\&tmiperadsing temperature

Fractional crystallization is the separation of a mixture of substances into pure components on the basis of their differing solubilities.

Suppose you have $90 \mathrm{~g} \mathrm{KNO}_{3}$ contaminated with 10 g NaCl .

Fractional crystallization:

1. Dissolve sample in 100 mL of water at $60^{\circ} \mathrm{C}$
2. Cool solution to $0^{\circ} \mathrm{C}$
3. All NaCl will stay in solution ($\mathrm{s}=34.2 \mathrm{~g} / 100 \mathrm{~g}$)
4. 78 g of PURE KNO_{3} will precipitate ($\mathrm{s}=12 \mathrm{~g} / 100 \mathrm{~g}$). $90 \mathrm{~g}-12 \mathrm{~g}=78 \mathrm{~g}$

Temperature and Solubility

Gas solubility and temperature

Pressure and Solubility of Gases

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (Henry's law).
c is the concentration (M) of the dissolved gas
$C=k P \quad P$ is the pressure of the gas over the solution
k is a constant (mol/L•atm) that depends only on temperature

Example 12.6

The solubility of nitrogen gas at $25^{\circ} \mathrm{C}$ and 1 atm is 6.8×10^{-4} $\mathrm{mol} / \mathrm{L}$. What is the concentration (M) of nitrogen dissolved in water Under atmospheric conditions? The partial pressure of nitrogen gas in the atmosphere is 0.78 atm .
Solution 12.6

$$
\begin{aligned}
& c=k p \\
& 6.8 \times 10^{-4}=k \times(1 \mathrm{~atm}) \\
& \mathrm{K}=6.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} . \mathrm{atm} \\
& \mathrm{c}=\mathrm{km} / \mathrm{H} \\
&=6.8 \times 10^{-4} \times 0.78 \mathrm{~atm}=5.3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\mathrm{mm} / \mathrm{Hg} / 760=\mathrm{atm}
$$

Chemistry In Action: The Killer Lake

8/21/86
CO_{2} Cloud Released 1700 Casualties

Trigger?

- earthquake
- landslide

Lake Nyos, West Africa

- strong Winds

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.

Vapor-Pressure Lowering

$P_{1}=X_{1} P_{1}^{0} \quad P_{1}^{0}=$ vapor pressure of pure solvent
Raoult's law
$X_{1}=$ mole fraction of the solvent
If the solution contains only one solute:

$$
\begin{array}{ll}
X_{1}=1-X_{2} \quad P_{1}=\left(1-X_{2}\right) P_{1} o_{1} & P_{1}=P_{1}{ }^{\circ}-P_{1}{ }^{\circ} X^{2} \\
\mathrm{P}_{1}{ }^{\circ} \mathrm{X}_{2}=\mathrm{P}_{1}{ }^{\circ}-\mathrm{P}_{1}=\Delta P \\
X_{2}=\text { mole fraction of the solute } \\
\Delta \mathrm{P}=\text { Lowering of vapor pressure } &
\end{array}
$$

Rault,s Law:

For ideal gases, the vapor pressure of solution $\left(\mathrm{P}_{\mathrm{T}}\right)$ in two component system A and B is :

$$
P_{T}=P_{A}+P_{B} \ldots \ldots \ldots \ldots(1)
$$

$$
P_{B}=X_{B} P_{B}^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \text { (} 3 \text {) }
$$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ} \ldots \ldots \ldots \text { (4) }
$$

P_{T} is greater than predicted by Raoults's law

$\begin{gathered}\text { Force } \\ A-B\end{gathered}<\begin{gathered}\text { Force } \\ A-A\end{gathered} \& \begin{gathered}\text { Force } \\ B-B\end{gathered}$
P_{T} is less than predicted by Raoults's law

$\underset{A-B}{\text { Force }}>\substack{\text { Force } \\ A-A} \& \begin{gathered}\text { Force } \\ B-B\end{gathered}$

Fractional Distillation Apparatus

EX. 1 Heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$ and octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ form ideal solution. What is the vapor pressure at $40^{\circ} \mathrm{C}$ of a solution that contains 3.0 mol of heptane and 5 mol of octane ?
At $40^{\circ} \mathrm{C} \mathrm{p}_{\text {heptan }}^{\circ}=0.121 \mathrm{~atm}$ and $\mathrm{p}_{\text {octane }}^{\circ}=0.041 \mathrm{~atm}$.
Ans.

$$
\mathrm{n}_{\mathrm{h}}+\mathrm{n}_{0}=3+5=8
$$

$$
x_{h}=3 / 8=0.375
$$

$$
X_{0}=5 / 8=0.625
$$

$$
\frac{P_{t}=X_{h} \mathrm{P}_{\mathrm{h}}^{\circ}+\mathrm{X}_{0} \mathrm{P}_{\mathrm{o}}^{\circ}}{=0.375 \times 0.121+0.625 \times 0.041}
$$

$$
=0.045+0.026
$$

$$
=0.071 \mathrm{~atm}
$$

Boiling-Point Elevation

$$
\Delta T_{\mathrm{b}}=T_{\mathrm{b}}-T_{\mathrm{b}}^{0}
$$

T_{b}^{0} is the boiling point of the pure solvent
T_{b} is the boiling point of the solution

$$
T_{\mathrm{b}}>T_{\mathrm{b}}^{0} \quad \Delta T_{\mathrm{b}}>0
$$

$$
\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m
$$

m is the molality of the solution
K_{b} is the molal boiling-point elevation constant (${ }^{\circ} \mathrm{C} / m$)

Freezing-Point Depression

$$
\Delta T_{\mathrm{f}}=T_{\mathrm{f}}^{0}-T_{\mathrm{f}}
$$

T_{f}^{0} is the freezing point of the pure solvent
T_{f} is the freezing point of the solution

$$
T_{f}^{0}>T_{f} \quad \Delta T_{f}>0
$$

$$
\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m
$$

m is the molality of the solution
K_{f} is the molal freezing-point depression constant (${ }^{\circ} \mathrm{C} / m$)

Molal Boiling－Point Elevation and Freezing－Point Depression Constants of Several Common Liquids
$\stackrel{\text { 山 }}{\mathbf{m}}$

Solvent	Normal Freezing Point $\left({ }^{\circ} \mathbf{C}\right)^{*}$	$\boldsymbol{K}_{\mathbf{f}}$ $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m}\right)$	Normal Boiling Point $\left({ }^{\circ} \mathbf{C}\right)^{*}$	$\boldsymbol{K}_{\mathbf{b}}$ $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m}\right)$
Water	0	1.86	100	0.52
Benzene	5.5	5.12	80.1	2.53
Ethanol	-117.3	1.99	78.4	1.22
Acetic acid	16.6	3.90	117.9	2.93
Cyclohexane	6.6	20.0	80.7	2.79

12.6

Ex. What are the boiling point and freezing point of a solution prepared by dissolving 2.4 g of biphenyl $\left(\mathrm{C}_{12} \mathrm{H}_{10}\right)$ in 75 g of benzene ? If k_{b} and k_{f} for benzene are $2.53^{\circ} \mathrm{C} / \mathrm{m}$ and $5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$, respectively. The b.p and f.p of benzene are 80.1 and $5.5^{\circ} \mathrm{C}$, respectively.

$$
\begin{aligned}
& \mathrm{n}=2.4 / 154=0.015 \mathrm{~mol} \\
& \mathrm{~m}=0.015 \mathrm{~mol} / 0.075 \mathrm{Kg} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=2.53 \times 0.208 \\
& =0.208 \mathrm{~m} \\
& =0.526^{\circ} \mathrm{C} \\
& \text { b.p. of solution }=\text { b.p of pure solvent }+\Delta T_{b} \\
& =80.1+0.526=80.626 \mathrm{C}^{\circ} \\
& \Delta \mathrm{T}_{\mathrm{f}}=5.12 \times 0.208=1.06 \mathrm{C}^{\circ} \\
& \text { f.p. of solution }=\text { f.p. of pure solvent }-\Delta T_{f} \\
& =5.5-1.06=4.4 \mathrm{C}^{\circ}
\end{aligned}
$$

What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g .
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \quad K_{\mathrm{f}}$ water $=1.86^{\circ} \mathrm{C} / m$
moles of solute $\quad 478 \mathrm{~g} \times \frac{1}{62.01 \mathrm{~g}}$
$\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}=\frac{62.01 \mathrm{~g}}{3.202 \mathrm{~kg} \text { solvent }}=2.41 \mathrm{~m}$

$$
\begin{aligned}
& \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m=1.86^{\circ} \mathrm{C} / m \times 2.41 \mathrm{~m}=4.48^{\circ} \mathrm{C} \\
& \Delta T_{\mathrm{f}}=T_{\mathrm{f}}^{0}-T_{\mathrm{f}} \\
& T_{\mathrm{f}}=T_{\mathrm{f}}^{0}-\Delta T_{\mathrm{f}}=0.00^{\circ} \mathrm{C}-4.48^{\circ} \mathrm{C}=-4.48^{\circ} \mathrm{C}
\end{aligned}
$$

Osmotic Pressure (π)

Osmosis is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one.

A semipermeable membrane allows the passage of solvent molecules but blocks the passage of solute molecules.
Osmotic pressure (π) is the pressure required to stop osmosis.

Solvent
molecule

Osmotic Pressure (π)

M is the molarity of the solution
R is the gas constant
T is the temperature (in K)

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.
$\begin{array}{ll}\text { Vapor-Pressure Lowering } & P_{1}=X_{1} P_{1}^{0} \\ & \Delta \mathrm{P}=X_{2} P_{1}^{0} \\ \text { Boiling-Point Elevation } & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m\end{array}$
Freezing-Point Depression
$\Delta T_{f}=K_{f} m$

Osmotic Pressure (π)
$\pi=M R T$

Colligative Properties of Electrolyte Solutions

0.1 m NaCl solution $\longrightarrow 0.1 \mathrm{~m} \mathrm{Na}^{+}$ions \& 0.1 m Cl - ions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.
0.1 m NaCl solution $\longrightarrow 0.2 \mathrm{~m}$ ions in solution van't Hoff factor (i) $=\frac{\text { actual number of particles in soln after dissociation }}{\text { number of formula units initially dissolved in soln }}$

ishould be

nonelectrolytes
NaCl
CaCl_{2}
3

Colligative Properties of Electrolyte Solutions
Boiling-Point Elevation $\quad \Delta T_{\mathrm{b}}=i K_{\mathrm{b}} m$
Freezing-Point Depression $\quad \Delta T_{f}=i K_{\mathrm{f}} m$
Osmotic Pressure (π)

$$
\pi=i M R T
$$

The van't Hoff Factor of 0.0500 M Electrolyte Solutions at $25^{\circ} \mathrm{C}$
Electrolyte
i (Measured)
i (Calculated)

Sucrose*	1.0	1.0
HCl	1.9	2.0
NaCl	1.9	2.0
MgSO_{4}	1.3	2.0
MgCl_{2}	2.7	3.0
FeCl_{3}	3.4	4.0

Example : A solution containing 0.833 g of a polymer of unknown structure in 170 ml of an organic solvent was found to have an osmotic pressure of 5.2 mmHg at $25^{\circ} \mathrm{C}$. Determine the molar mass of the polymer

Solution:

$$
\begin{gathered}
\pi=\text { MRT } \\
\pi=5.2 / 760=0.0075 \mathrm{~atm} \\
M=\pi / R T=0.0075 / 0.0821 \times 298=2.8 \times 10^{-4} \text { molar }
\end{gathered}
$$

Multiplying the molarity by the volume of solution (in L) gives moles of solute (polymer)
$? \mathrm{~mol}$ of polymer $=\left(2.80 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)(0.170 \mathrm{~L})=4.76 \times 10^{-5} \mathrm{~mol}$ polymer
Molar mass $=$ Mass (g) / number of moles of polymer

$$
\begin{gathered}
=0.833(\mathrm{~g}) / 4.76 \times 10^{-5} \mathrm{~mol} \text { polymer } \\
=1.75 \times 1 \mathbf{1 0}^{\mathbf{4}} \mathbf{~} \mathbf{~} / \mathbf{m o l}
\end{gathered}
$$

Example: A 7.85 g sample of a compound with the empirical Formula $\mathrm{C}_{5} \mathrm{H}_{4}$ is dissolved in 301 g of benzene. The freezing Point of the solution is $1.05{ }^{\circ} \mathrm{C}$ below that of the pure benzene. What are the molar mass and molecular formula of this compound?
Solution: molality $=\Delta T_{f} / K_{f}=1.05^{\circ} \mathrm{C} / 5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$

$$
=0.205 \mathrm{~m}
$$

Number of moles of solute $=$ molality $\times \mathrm{Kg}$ of solvent

$$
=0.205 \mathrm{~m} \times 0.301 \mathrm{Kg}=0.0617 \mathrm{~mol} .
$$

Molar mass = Mass (g)/ number of moles

$$
=7.85 \mathrm{~g} / 0.0617 \mathrm{~mol}=127 \mathrm{~g} / \mathrm{mol}
$$

Molecular formula $=\mathrm{C}_{5} \mathrm{H}_{4} \times$ (molar mass/mass of empirical formula)

$$
=\mathrm{C}_{5} \mathrm{H}_{4} \times(127 \mathrm{~g} / \mathrm{mol} / 64 \mathrm{~g} / \mathrm{mol})=\mathrm{C}_{10} \mathrm{H}_{8}
$$

