

Physical Properties of Solutions

Chapter 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A *solution* is a homogenous mixture of 2 or more substances

The *solute* is(are) the substance(s) present in the smaller amount(s)

The *solvent* is the substance present in the larger

amount	5						
	12	Types of Solutions					
	TABLE	Component 1	Component 2	State of Resulting Solution	Examples		
	Г	Gas	Gas	Gas	Air		
		Gas	Liquid	Liquid	Soda water (CO ₂ in water)		
		Gas	Solid	Solid	H ₂ gas in palladium		
		Liquid	Liquid	Liquid	Ethanol in water		
		Solid	Liquid	Liquid	NaCl in water		
		Solid	Solid	Solid	Brass (Cu/Zn), solder (Sn/Pb)		

A *saturated solution* contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature.

An *unsaturated solution* contains less solute than the solvent has the capacity to dissolve at a specific temperature.

A *supersaturated solution* contains more solute than is present in a saturated solution at a specific temperature.

Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate.

Three types of interactions in the solution process:

- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction

"like dissolves like"

Two substances with similar *intermolecular* forces are likely to be soluble in each other.

- non-polar molecules are soluble in non-polar solvents CCI_4 in C_6H_6
- polar molecules are soluble in polar solvents C_2H_5OH in H_2O
- ionic compounds are more soluble in polar solvents NaCl in H_2O or NH_3 (*I*)

Concentration Units

The *concentration* of a solution is the amount of solute present in a given quantity of solvent or solution.

Percent by Mass

% by mass = $\frac{\text{mass of solute}}{\text{mass of solute} + \text{mass of solvent}} \times 100\%$ = $\frac{\text{mass of solute}}{\text{mass of solute}} \times 100\%$

Mole Fraction (X)

 $X_A = \frac{\text{moles of A}}{\text{sum of moles of all components}}$

Concentration Units Continued

100g of an aqueous solution containing 5g of NaCl; what is the mass percentage of NaCl in the solution ?

Mass % of NaCl = $(5/100) \times 100$

Gases solution contain 2.0 g of the He and 4g of O_2 . What are the mole fractions of He and O_2 in the solution?

$$X_{He} = n_{He} / n_{He} + n_{O2} X_{O2} = n_{O2} / n_{He} + n_{O2}$$

First we find the number of mole of each component present in solution n_{He} and n_{O2}

$$n_{\rm He} = mass$$
 He / Mw , $n_{\rm He} = 2.0g$ /4.0g mol^-1 = 0.5 mole He

 n_{O2} = mass of O_2 / Mw , n_{O2} =4.0g /32.g mol⁻¹ = 0.125 mole O_2

$$X_{He} = 0.5 / 0.5 + 0.125 \quad X_{O2} = 0.125 / 0.5 + 0.125 = 0.2$$

=0.8
Note: $X_{He} + X_{O2} = 0.8 + 0.2 = 1$

What is the molality of $CuSO_4$ solution when 20 g of $CuSO_4$ dissolved in 100 g of water ?

$$Cu = 63.5$$
, $S = 32$, $O = 16$

Answer

m = n solute / Kg of solvent n of $CuSO_4$ = mass / MW = 20 g / 159.5 g mol⁻¹

= 0.125 mol

m = n CuSO₄ / Mass of H₂O (Kg) m = 0.125 / 0.1 = 1.25 m

What are the mole fractions of solute and solvent in 1.00 m aqueous solution ?

Answer : m = n solute / Kg of solvent

1 m = 1 mol / 1 Kg, So mass of water = 1000 g The MW of H₂O = 18 g / mol

No. of mole of $H_2O = 1000 \text{ g} / 18 \text{ g/mol} = 55.6 \text{ mol } H_2O$.

 n_{solute} (no. of mole of solute) = 1 mol

 $n_{H2O} = 55.6 \text{ mol}$ $X_{solute} = 1 / (1+55.6) = 0.018$ $X_{H2O} = 55.6 / (1 + 55.6) = 0.982$.

What is the molality of a 5.86 *M* ethanol (C₂H₅OH)
solution whose density is 0.927 g/mL?
$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \qquad M = \frac{\text{moles of solute}}{\text{liters of solution}}$$
$$M = \frac{\text{moles of solute}}{\text{liters of solution}} + \frac{1 \text{ L of solution: M = number of moles / Volume (L)}}{5.86 \text{ M = number of moles / Volume (L)}}$$
number of moles of ethanol = 5.86 moles
Mass of ethanol = 5.86 x 46 = 270 g ethanol
Mass of solution = 1000 ml x 0.927 g/ml= 927 g
mass of solvent = mass of solution - mass of solute
$$m = \frac{\text{moles of solute}}{\text{moles of solute}} = \frac{5.86 \text{ moles } C_2H_5OH}{0.657 \text{ kg solvent}} = 8.92 \text{ m}$$

Temperature and Solubility

Solid solubility and temperature

solstolilibilitycræfasælistevith dæræssingwithmiperatistieg temperature

Fractional crystallization is the separation of a mixture of substances into pure components on the basis of their differing solubilities.

Suppose you have 90 g KNO_3 contaminated with 10 g NaCl.

Fractional crystallization:

- Dissolve sample in 100 mL of water at 60°C
- 2. Cool solution to 0° C
- 3. All NaCl will stay in solution (s = 34.2g/100g)
- 4. 78 g of PURE KNO_3 will precipitate (s = 12 g/100g). 90 g - 12 g = 78 g

Temperature and Solubility

Gas solubility and temperature

solubility usually decreases with increasing temperature

Pressure and Solubility of Gases

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (*Henry's law*).

c is the concentration (M) of the dissolved gas

P is the pressure of the gas over the solution

k is a constant (mol/L•atm) that depends only on temperature

C = kP

Example 12.6

The solubility of nitrogen gas at 25 °C and 1 atm is 6.8x10⁻⁴ mol/L. What is the concentration(M) of nitrogen dissolved in water Under atmospheric conditions? The partial pressure of nitrogen gas in the atmosphere is 0.78 atm.

Solution 12.6 c = k p $6.8x10^{-4} = k x (1atm)$ $K = 6.8x10^{-4} mol/L.atm$ c = k x p $= 6.8x10^{-4} x 0.78 atm = 5.3 x 10^{-4} mol/L$

Chemistry In Action: The Killer Lake

8/21/86 CO₂ Cloud Released 1700 Casualties

- earthquake
- landslide
- strong Winds

Lake Nyos, West Africa

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

Vapor-Pressure Lowering

$$P_1^0$$
 = vapor pressure of **pure** solvent

Raoult's law

$$X_1$$
 = mole fraction of the solvent

If the solution contains only one solute:

$$X_1 = 1 - X_2$$
 $P_1 = (1 - X_2) P_1^o$ $P_1 = P_1^o - P_1^o X_2$

$$P_1^{\circ} X_2 = P_1^{\circ} - P_1 = \Delta P$$

 X_2 = mole fraction of the solute
 ΔP = Lowering of vapor pressure

For ideal gases, the vapor pressure of solution (P $_T$) in two component system A and B is :

$$P_{T} = P_{A} + P_{B} \dots (1)$$

$$P_{T} = X_{A}P_{A}^{\circ} + X_{B}P_{B}^{\circ} \dots \dots (4)$$

$$P_{A} = X_{A} P_{A}^{0}$$

$$P_{B} = X_{B} P_{B}^{0}$$

$$P_{T} = P_{A} + P_{B}$$

$$P_{T} = X_{A} P_{A}^{0} + X_{B} P_{B}^{0}$$

Fractional Distillation Apparatus

Boiling-Point Elevation

$$\Delta T_{\rm b} = T_{\rm b} - T_{\rm b}^{0}$$

- ${\cal T}^0_b$ is the boiling point of the pure solvent
- \mathcal{T}_{b} is the boiling point of the solution

$$T_{\rm b} > T_{\rm b}^{0} \qquad \Delta T_{\rm b} > 0$$
$$\Delta T_{\rm b} = K_{\rm b} m$$

m is the molality of the solution $K_{\rm b}$ is the molal boiling-point elevation constant (°C/*m*)

Freezing-Point Depression

$$\Delta T_{\rm f} = T_{\rm f}^0 - T_{\rm f}$$

- 7⁰ is the freezing point of the pure solvent
- \mathcal{T}_{f} is the freezing point of the solution

$$T_{\rm f}^0 > T_{\rm f} \qquad \Delta T_{\rm f} > 0$$
$$\Delta T_{\rm f} = K_{\rm f} m$$

m is the molality of the solution $K_{\rm f}$ is the molal freezing-point depression constant (⁰C/*m*)

Solvent	Normal Freezing Point (°C)*	К _f (°C/ <i>m</i>)	Normal Boiling Point (°C)*	К _ь (°С/ <i>т</i>)
Water	0	1.86	100	0.52
Benzene	5.5	5.12	80.1	2.53
Ethanol	-117.3	1.99	78.4	1.22
Acetic acid	16.6	3.90	117.9	2.93
Cyclohexane	6.6	20.0	80.7	2.79

* Measured at 1 atm.

TABLE

12.6

Ex. What are the boiling point and freezing point of a solution prepared by dissolving 2.4 g of biphenyl ($C_{12}H_{10}$) in 75 g of benzene ? If k_b and k_f for benzene are 2.53°C/m and 5.12 °C/m, respectively. The b.p and f.p of benzene are 80.1 and 5.5 °C, respectively.

What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g.

 $\Delta T_{\rm f} = K_{\rm f} m \qquad K_{\rm f} \text{ water} = 1.86 \ {}^{0}\text{C/m}$ $m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{478 \text{ g} \times \frac{1 \text{ mol}}{62.01 \text{ g}}}{3.202 \text{ kg solvent}} = 2.41 m$

 $\Delta T_{\rm f} = K_{\rm f} \ m = 1.86 \ {}^{\rm o}{\rm C}/m \ge 2.41 \ m = 4.48 \ {}^{\rm o}{\rm C}$ $\Delta T_{\rm f} = T_{\rm f}^{\rm 0} - T_{\rm f}$ $T_{\rm f} = T_{\rm f}^{\rm 0} - \Delta T_{\rm f} = 0.00 \ {}^{\rm o}{\rm C} - 4.48 \ {}^{\rm o}{\rm C} = -4.48 \ {}^{\rm o}{\rm C}$

Osmotic Pressure (π **)**

Osmosis is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one.

A *semipermeable membrane* allows the passage of solvent molecules but blocks the passage of solute molecules.

Osmotic pressure (π) is the pressure required to stop osmosis.

Osmotic Pressure (π **)**

M is the molarity of the solution

R is the gas constant

T is the temperature (in K)

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

Vapor-Pressure Lowering $P_1 = X_1 P_1^0$
 $\Delta P = X_2 P_1^0$
 $\Delta T_b = K_b m$ Boiling-Point Elevation $\Delta T_b = K_b m$ Freezing-Point Depression $\Delta T_f = K_f m$ Osmotic Pressure (π) $\pi = MRT$

Colligative Properties of Electrolyte Solutions

0.1 *m* NaCl solution \longrightarrow 0.1 *m* Na⁺ ions & 0.1 *m* Cl⁻ ions

Colligative properties are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

0.1 *m* NaCl solution \longrightarrow 0.2 *m* ions in solution

van't Hoff factor (i) = $\frac{\text{actual number of particles in soln after dissociation}}{\text{number of formula units initially dissolved in soln}}$

	<u><i>i</i> should be</u>
nonelectrolytes	1
NaCl	2
CaCl ₂	3

Colligative Properties of Electrolyte Solutions Boiling-Point Elevation $\Delta T_{\rm b} = i K_{\rm b} m$ **Freezing-Point Depression** $\Delta T_{f} = i K_{f} m$ $\pi = iMRT$ **Osmotic Pressure** (π) ŝ 12 The van't Hoff Factor of 0.0500 *M* Electrolyte Solutions at 25°C TABLE Electrolyte i (Measured) i (Calculated) Sucrose* 1.0 1.0 **HCl** 1.9 2.0 NaCl 1.9 2.0 MgSO₄ 1.3 2.0 2.7 MgCl₂ 3.0 FeCl₃ 4.0 3.4

Example : A solution containing 0.833 g of a polymer of unknown structure in 170 ml of an organic solvent was found to have an osmotic pressure of 5.2 mmHg at 25 °C. Determine the molar mass of the polymer

Solution:

$\pi = MRT$

 $\pi = 5.2 / 760 = 0.0075$ atm $M = \pi / R T = 0.0075 / 0.082 1x 298 = 2.8x 10^{-4}$ molar

Multiplying the molarity by the volume of solution (in L) gives moles of solute (polymer)

? mol of polymer = $(2.80 \times 10^{-4} \text{ mol/L})(0.170 \text{ L}) = 4.76 \times 10^{-5} \text{ mol polymer}$ Molar mass = Mass (g) / number of moles of polymer = $0.833 \text{ (g)}/ 4.76 \times 10^{-5} \text{ mol polymer}$ = $1.75 \times 10^4 \text{ g/mol}$ Example: A 7.85 g sample of a compound with the empirical Formula C_5H_4 is dissolved in 301 g of benzene. The freezing Point of the solution is 1.05 °C below that of the pure benzene. What are the molar mass and molecular formula of this compound?

Solution: molality =
$$\Delta T_f / K_f = 1.05 \text{ °C} / 5.12 \text{ °C/m}$$

= 0.205 m

Number of moles of solute = molality x Kg of solvent = 0.205 m x 0.301 Kg = 0.0617 mol.

Molar mass = Mass (g)/ number of moles

= 7.85 g / 0.0617 mol = 127 g/mol

Molecular formula = $C_5H_4 \times (\text{molar mass}/\text{mass of empirical formula})$

 $= C_5 H_4 x(127 \text{ g/mol}/ 64 \text{ g/mol}) = C_{10} H_8$