

Nuclear Chemistry

 Chapter 23Atomic number $(Z)=$ number of protons in nucleus
Mass number $(\mathrm{A})=$ number of protons + number of neutrons $=$ atomic number $(Z)+$ number of neutrons $\underset{\text { Atomic Number } \longrightarrow \mathrm{Z}}{\text { Mass Number }} \mathrm{A} \longrightarrow$ Element Symbol

$\begin{aligned} & \text { proton } \\ & { }_{1}^{1} \mathrm{p} \text { or }{ }_{1}^{1} \mathrm{H} \end{aligned}$	neutron ${ }_{0}^{11} n$	electron ${ }_{-1}^{0} \mathrm{e}$ or ${ }_{-1}^{0} \beta$	positron ${ }_{+1}^{0} \mathrm{e} \text { or }{ }_{+1}^{0} \beta$	α particle ${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$
1	1	0	0	4
1	0	-1	+1	2

Isotopes

Different forms of the same atom, having the same Atomic number (protons) and different mass number (different number of neutrons)
$\begin{array}{rrr}\text { proton } & \text { Deutron } & \text { tritium } \\ { }_{1}^{1} \mathrm{H} & { }_{1}^{2} \mathrm{H} & { }_{1}^{3} \mathrm{H}\end{array}$

Balancing Nuclear Equations

1. Conserve mass number (A).

The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants.

$$
\begin{gathered}
{ }_{925}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{55}^{138} \mathrm{Cs}+{ }_{37}^{96} \mathrm{Rb}+2{ }_{0}^{1} \mathrm{n} \\
235+1=138+96+2 \times 1
\end{gathered}
$$

2. Conserve atomic number (Z) or nuclear charge.

The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants.

$$
\begin{gathered}
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{55}^{138} \mathrm{Cs}+{ }_{37}^{96} \mathrm{Rb}+2{ }_{0}^{1} \mathrm{n} \\
92+0=55+37+2 \times 0
\end{gathered}
$$

${ }^{212}$ Po decays by alpha emission. Write the balanced

 nuclear equation for the decay of ${ }^{212} \mathrm{Po}$.alpha particle $-{ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$

$$
{ }_{84}^{212} \mathrm{Po} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{\mathrm{Z}}^{A} \mathrm{X}
$$

$$
\begin{array}{rr}
212=4+A & A=208 \\
84=2+Z & Z=82 \\
{ }_{84}^{212} \mathrm{Po} \longrightarrow
\end{array}{ }_{2}^{4} \mathrm{He}+{ }_{82}^{208} \mathrm{~Pb}
$$

Comparison of Chemical Reactions and Nuclear Reactions

Chemical Reactions

1. Atoms are rearranged by the breaking and forming of chemical bonds.
2. Only electrons in atomic or molecular orbitals are involved in the breaking and forming of bonds.
3. Reactions are accompanied by absorption or release of relatively small amounts of energy.
4. Rates of reaction are influenced by temperature, pressure, concentration, and catalysts.

Nuclear Reactions

1. Elements (or isotopes of the same elements) are converted from one to another.
2. Protons, neutrons, electrons, and other elementary particles may be involved.
3. Reactions are accompanied by absorption or release of tremendous amounts of energy.
4. Rates of reaction normally are not affected by temperature, pressure, and catalysts.

Nuclear Stability and Radioactive Decay

Beta decay

$$
\begin{aligned}
& { }_{6}^{14} \mathrm{C} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \beta+\overline{\mathrm{v}} \quad \text { Decrease \# of neutrons by } 1 \\
& { }_{19}^{40} \mathrm{~K} \longrightarrow{ }_{20}^{40} \mathrm{Ca}+{ }_{-1}^{0} \mathrm{\beta}+\overline{\mathrm{v}} \\
& { }_{0}^{1} n \longrightarrow{ }_{1}^{1} p+{ }_{-1}^{0} \beta+\bar{v}
\end{aligned}
$$

Positron decay

$$
\begin{aligned}
& { }_{6}^{11} \mathrm{C} \longrightarrow{ }_{5}^{11} \mathrm{~B}+{ }_{+1}^{0} \beta+v \quad \text { Increase \# of neutrons by } 1 \\
& { }_{19}^{38} \mathrm{~K} \longrightarrow{ }_{18}^{38} \mathrm{Ar}+{ }_{+1}^{0} \beta+v \quad \text { Decrease } \# \text { of protons by } 1 \\
& { }_{1}^{1} p \longrightarrow{ }_{0}^{1} n+{ }_{+1}^{0} \beta+v \\
& v \text { and } \bar{v} \text { have } A=0 \text { and } Z=0
\end{aligned}
$$

Nuclear Stability and Radioactive Decay

Electron capture decay

$$
\begin{array}{cc}
{ }_{18}^{37} \mathrm{Ar}+{ }_{-1}^{0} \mathrm{e} \longrightarrow{ }_{17}^{37} \mathrm{Cl}+v & \text { Increase \# of neutrons by } 1 \\
{ }_{26}^{55} \mathrm{Fe}+{ }_{-1}^{0} \mathrm{e} \longrightarrow{ }_{25}^{55} \mathrm{Mn}+v & \text { Decrease \# of protons by } 1 \\
{ }_{1}^{1 p}+{ }_{-1}^{0} \mathrm{e} \longrightarrow{ }_{0}^{1} \mathrm{n}+v
\end{array}
$$

Alpha decay
Decrease \# of neutrons by 2

$$
{ }_{84}^{212 \mathrm{Po}} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{82}^{208} \mathrm{~Pb}
$$

Decrease \# of protons by 2
Spontaneous fission

$$
{ }_{98}^{252} \mathrm{Cf} \longrightarrow{ }_{49}^{125 \ln }+2{ }_{0}^{1} \mathrm{n}
$$

Nuclear Stability

- Certain numbers of neutrons and protons are extra stable
- n or $p=2,8,20,50,82$ and 126
- Like extra stable numbers of electrons in noble gases ($e^{-}=2,10,18,36,54$ and 86)
- Nuclei with even numbers of both protons and neutrons are more stable than those with odd numbers of neutron and protons
- All isotopes of the elements with atomic numbers higher than 83 are radioactive
- All isotopes of Tc and Pm are radioactive

Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons.

$$
\mathrm{BE}+{ }_{9}^{19} \mathrm{~F} \longrightarrow 9{ }_{1}^{1} \mathrm{p}+10{ }_{0}^{1} \mathrm{n}
$$

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

$$
B E=9 \times(p \text { mass })+10 \times(n \text { mass })-{ }^{19} F \text { mass }
$$

$B E(\mathrm{amu})=9 \times 1.007825+10 \times 1.008665-18.9984$

$$
\begin{array}{ll}
\mathrm{BE}=0.1587 \mathrm{amu} & 1 \mathrm{amu}=1.49 \times 10^{-10} \mathrm{~J} \\
\mathrm{BE}=2.37 \times 10^{-11} \mathrm{~J} &
\end{array}
$$

binding energy per nucleon $=\frac{\text { binding energy }}{\text { number of nucleons }}$

$$
=\frac{2.37 \times 10^{-11} \mathrm{~J}}{19 \text { nucleons }}=1.25 \times 10^{-12} \mathrm{~J}
$$

Nuclear binding energy per nucleon vs Mass number

23.2

Kinetics of Radioactive Decay

$N \longrightarrow$ daughter

$$
\begin{gathered}
\text { rate }=-\frac{\Delta \mathrm{N}}{\Delta t} \quad \text { rate }=\lambda \mathrm{N} \\
-\frac{\Delta \mathrm{N}}{\Delta t}=\lambda \mathrm{N}
\end{gathered}
$$

$\mathrm{N}=\mathrm{N}_{0} \exp (-\lambda t) \quad \ln \mathrm{N}=\ln \mathrm{N}_{0}-\lambda t$
$\mathrm{N}=$ the number of atoms at time t
$\mathrm{N}_{0}=$ the number of atoms at time $t=0$ λ is the decay constant

$$
\lambda=\frac{\ln 2}{t_{1 / 2}}
$$

Kinetics of Radioactive Decay

$[\mathrm{N}]=[\mathrm{N}]_{0} \exp (-\lambda t)$
$\ln [\mathrm{N}]=\ln [\mathrm{N}]_{0}-\lambda t$
\square
t

EXAMPLE:

The half-life of ${ }^{90} \mathrm{Sr}$ is 29 years. What fraction of the atoms in sample of ${ }^{90} \mathrm{Sr}$ would remain 175 years later?
a) 0.166
b) 0.125
c) 0.015
d) 0.50

Total time / $\mathrm{t}_{1 / 2}$

$$
\text { 175/29 = } 6.03 \text { periods }
$$

$1-\rightarrow 1 / 2-->1 / 4---->1 / 8---\rightarrow 1 / 16---\rightarrow 1 / 32----\rightarrow 1 / 64$
Another solution

$$
\begin{aligned}
& \mathrm{K}=\ln 2 / \mathrm{t}_{1 / 2}=0.693 / 29=0.0239 \mathrm{y}^{-1} \\
& \ln \mathrm{No} / \mathrm{N}=\mathrm{kt}=0.0239 \mathrm{y}^{-1} \times 175 \mathrm{y} \\
&=4.18 \\
& \mathrm{No} / \mathrm{N}=\mathrm{e}^{4.18}=65.36 \\
& \mathrm{~N}=1 / 65.36=0.015
\end{aligned}
$$

Radiocarbon Dating

$$
\begin{aligned}
& { }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H} \\
& { }_{6}^{14} \mathrm{C} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \beta+\overline{\mathrm{v}} \quad t_{1 / 2}=5730 \text { years } \\
& \quad \mathrm{k}=0.693 / 5730=1.2 \times 10^{-4} \mathrm{y}^{-1}
\end{aligned}
$$

Uranium-238 Dating

${ }^{238} \mathrm{U} \quad{ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{82}^{206} \mathrm{~Pb}+8{ }_{2}^{4} \alpha+6{ }_{-1}^{0} \beta \quad t_{1 / 2}=4.51 \times 10^{9}$ years

Nuclear Transmutation

$$
\begin{aligned}
& { }_{7}^{14} \mathrm{~N}+{ }_{2}^{4} \alpha \longrightarrow{ }_{8}^{17} \mathrm{O}+{ }_{1}^{1} \mathrm{p} \\
& { }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \alpha \longrightarrow{ }_{15}^{30} \mathrm{P}+{ }_{0}^{1} \mathrm{n} \\
& { }_{7}^{14} \mathrm{~N}+{ }_{1}^{1} \mathrm{p} \longrightarrow{ }_{6}^{11} \mathrm{C}+{ }_{2}^{4} \alpha
\end{aligned}
$$

Cyclotron Particle Accelerator

Nuclear Transmutation

The Transuranium Elements

Atomic

Number Name Symbol Preparation

93	Neptunium	Np	${ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{93}^{239} \mathrm{~Np}+{ }_{-1}^{0} \beta$
94	Plutonium	Pu	${ }_{93}^{239} \mathrm{~Np} \longrightarrow{ }_{94}^{239} \mathrm{Pu}+{ }_{-1}^{0} \beta$
95	Americium	Am	${ }_{94}^{239} \mathrm{Pu}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{95}^{240} \mathrm{Am}+{ }_{-1}^{0} \beta$
96	Curium	Cm	${ }_{94}^{239} \mathrm{Pu}+{ }_{2}^{4} \alpha \longrightarrow{ }_{96}^{242} \mathrm{Cm}+{ }_{0}^{1} \mathrm{n}$
97	Berkelium	Bk	${ }_{95}^{241} \mathrm{Am}+{ }_{2}^{4} \alpha \longrightarrow{ }_{97}^{243} \mathrm{Bk}+2{ }_{0}^{1} \mathrm{n}$
98	Californium	Cf	${ }_{96}^{242} \mathrm{Cm}+{ }_{2}^{4} \alpha \longrightarrow{ }_{98}^{245} \mathrm{Cf}+{ }_{0}^{1} \mathrm{n}$
99	Einsteinium	Es	${ }_{92}^{238} \mathrm{U}+15{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{99}^{253} \mathrm{Es}+7{ }_{-1}^{0} \beta$
100	Fermium	Fm	${ }_{92}^{238} \mathrm{U}+17{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{100}^{255} \mathrm{Fm}+8{ }_{-1}^{0} \beta$
101	Mendelevium	Md	${ }_{99}^{253} \mathrm{Es}+{ }_{2}^{4} \alpha \longrightarrow{ }_{101}^{256} \mathrm{Md}+{ }_{0}^{1} \mathrm{n}$
102	Nobelium	No	${ }_{96}^{246} \mathrm{Cm}+{ }_{6}^{12} \mathrm{C} \longrightarrow{ }_{102}^{254} \mathrm{No}+4{ }_{0}^{1} \mathrm{n}$
103	Lawrencium	Lr	${ }_{98}^{252} \mathrm{Cf}+{ }_{5}^{10} \mathrm{~B} \longrightarrow{ }_{103}^{257} \mathrm{Lr}+5{ }_{0}^{1} \mathrm{n}$
104	Rutherfordium	Rf	${ }_{98}^{249} \mathrm{Cf}+{ }_{6}^{12} \mathrm{C} \longrightarrow{ }_{104}^{257} \mathrm{Rf}+4{ }_{0}^{1} \mathrm{n}$
105	Dubnium	Db	${ }_{98}^{249} \mathrm{Cf}+{ }_{7}^{15} \mathrm{~N} \longrightarrow{ }_{105}^{260} \mathrm{Db}+4{ }_{0}^{1} \mathrm{n}$
106	Seaborgium	Sg	${ }_{98}^{249} \mathrm{Cff}+{ }_{8}^{18} \mathrm{O} \longrightarrow{ }_{106}^{263} \mathrm{Sg}+4{ }_{0}^{1} \mathrm{n}$
107	Bohrium	Bh	${ }_{83}^{209} \mathrm{Bi}+{ }_{24}^{54} \mathrm{Cr} \longrightarrow{ }_{107}^{262} \mathrm{Bh}+{ }_{0}^{1} \mathrm{n}$
108	Hassium	Hs	${ }_{82}^{208} \mathrm{~Pb}+{ }_{26}^{58} \mathrm{Fe} \longrightarrow{ }_{108}^{265} \mathrm{Hs}+{ }_{0}^{1} \mathrm{n}$
109	Meitnerium	Mt	${ }_{83}^{209} \mathrm{Bi}+{ }_{26}^{58} \mathrm{Fe} \longrightarrow{ }_{109}^{266} \mathrm{Mt}+{ }_{0}^{1} \mathrm{n}$

Nuclear Fission

$$
\begin{aligned}
\text { Energy } & =3.3 \times 10^{-11} \mathrm{~J} \text { per }{ }^{235} \mathrm{U} \\
& =2.0 \times 10^{13} \mathrm{~J} \text { per mole }{ }^{235} \mathrm{U}
\end{aligned}
$$

Combustion of 1 ton of coal $=5 \times 10^{7} \mathrm{~J}$

Nuclear Fission

Representative fission reaction
${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{38}^{90} \mathrm{Sr}+{ }_{54}^{143} \mathrm{Xe}+3{ }_{0}^{1} \mathrm{n}+$ Energy

Nuclear Fission

Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions.
The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass.

Nuclear Fission

Schematic diagram of a nuclear fission reactor

Nuclear Fission

35,000 tons SO_{2}

Annual Waste Production
4.5×10^{6} tons CO_{2}

1,000 MW coal-fired power plant

1,000 MW nuclear power plant

Nuclear Fission

Hazards of the radioactivities in spent fuel compared to uranium ore

Chemistry In Action: Nature’s Own Fission Reactor

Natural Uranium
0.7202 \% U-235 99.2798\% U-238

Measured at Oklo
0.7171 \% U-235

Nuclear Fusion

Fusion Reaction

$$
\begin{aligned}
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \\
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n} \\
& \mathrm{Ki}+{ }_{1}^{2} \mathrm{H} \longrightarrow 2{ }_{2}^{4} \mathrm{He}
\end{aligned}
$$

Tokamak magnetic plasma confinement

Energy Released

$6.3 \times 10^{-13} \mathrm{~J}$
$2.8 \times 10^{-12} \mathrm{~J}$
$3.6 \times 10^{-12} \mathrm{~J}$

Radioisotopes in Medicine

- 1 out of every 3 hospital patients will undergo a nuclear medicine procedure
- ${ }^{24} \mathrm{Na}, \mathrm{t}_{1 / 2}=14.8 \mathrm{hr}, \beta$ emitter, blood-flow tracer
- ${ }^{131} \mathrm{I}, \mathrm{t}_{1 / 2}=14.8 \mathrm{hr}, \beta$ emitter, thyroid gland activity
- ${ }^{123} \mathrm{I}, \mathrm{t}_{1 / 2}=13.3 \mathrm{hr}, \gamma$-ray emitter, brain imaging
- ${ }^{18} \mathrm{~F}, \mathrm{t}_{1 / 2}=1.8 \mathrm{hr}, \beta^{+}$emitter, positron emission tomography
- ${ }^{99 m T c}, t_{1 / 2}=6 \mathrm{hr}, \gamma$-ray emitter, imaging agent

Brain images with ${ }^{123}$-labeled compound

Geiger-Müller Counter

Biological Effects of Radiation

 Radiation absorbed dose (rad)$1 \mathrm{rad}=1 \times 10^{-5} \mathrm{~J} / \mathrm{g}$ of material
Roentgen equivalent for man (rem)
1 rem = 1 rad x Q Quality Factor

$$
\begin{gathered}
\gamma \text {-ray }=1 \\
\beta=1 \\
\alpha=20
\end{gathered}
$$

* 1 mrem $=1$ millirem $=1 \times 10^{-3} \mathrm{rem}$.
${ }^{*}$ The radioactivity in the body comes from food and air.

Chemistry In Action: Food Irradiation

Up to 100 kilorad

100 - 1000 kilorads

1000 to 10,000 kilorads

Effect
Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit.

Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.

