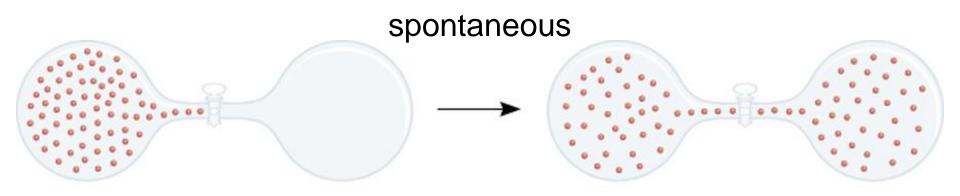
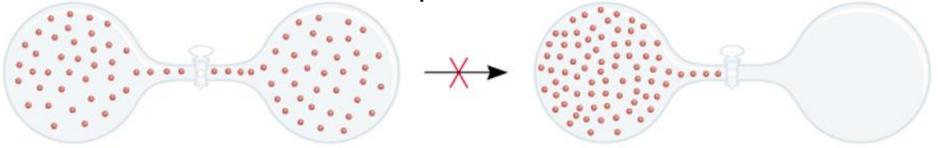

Entropy, Free Energy, and Equilibrium

Chapter 18


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spontaneous Physical and Chemical Processes


- A waterfall runs downhill
- A lump of sugar dissolves in a cup of coffee
- At 1 atm, water freezes below 0 °C and ice melts above 0 °C
- Heat flows from a hotter object to a colder object
- A gas expands in an evacuated bulb
- Iron exposed to oxygen and water forms rust

spontaneous

nonspontaneous

Does a decrease in enthalpy mean a reaction proceeds spontaneously?

Spontaneous reactions

$$CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(h) \quad \Delta H^{0} = -890.4 \text{ kJ}$$

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(h) \quad \Delta H^{0} = -56.2 \text{ kJ}$$

$$H_{2}O(s) \longrightarrow H_{2}O(h) \quad \Delta H^{0} = 6.01 \text{ kJ}$$

$$NH_{4}NO_{3}(s) \xrightarrow{H_{2}O} NH_{4}^{+}(aq) + NO_{3}^{-}(aq) \quad \Delta H^{0} = 25 \text{ kJ}$$

Entropy (S) is a measure of the **randomness or disorder** of a system.

order
$$\int S \downarrow$$
 disorder $\int S \uparrow$
 $\Delta S = S_{\rm f} - S_{\rm i}$

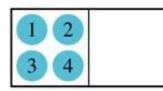
If the change from initial to final results in an increase in randomness

$$S_{\rm f} > S_{\rm i} \qquad \Delta S > 0$$

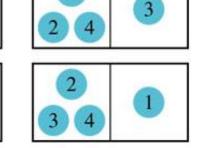
For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state

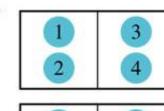
$$S_{\text{solid}} < S_{\text{liquid}} << S_{\text{gas}}$$
$$H_2O(s) \longrightarrow H_2O(l) \qquad \Delta S > 0$$

Entropy

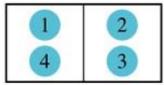

Distribution

Ι

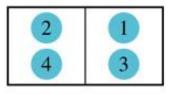

Microstates

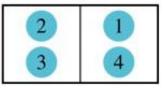

4

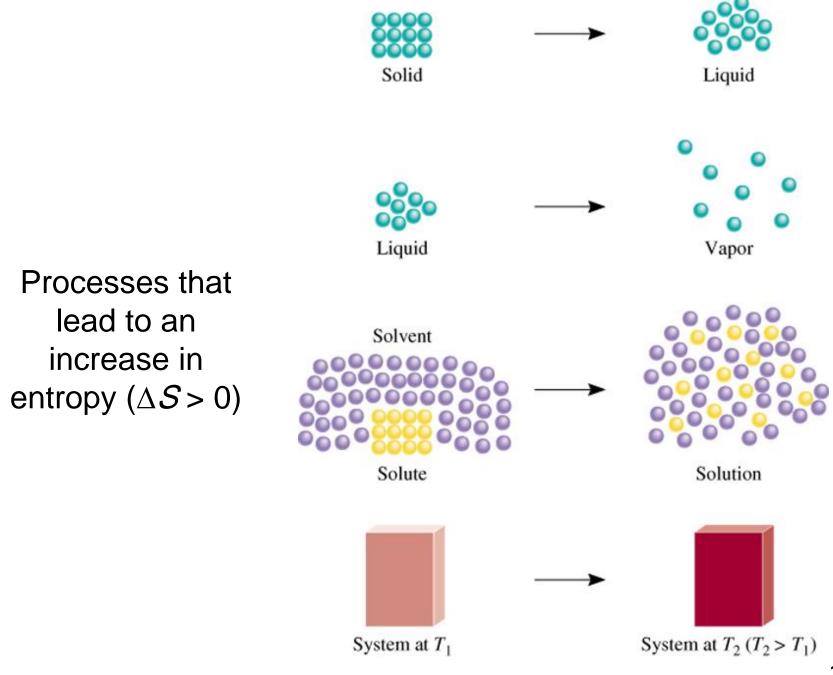

2



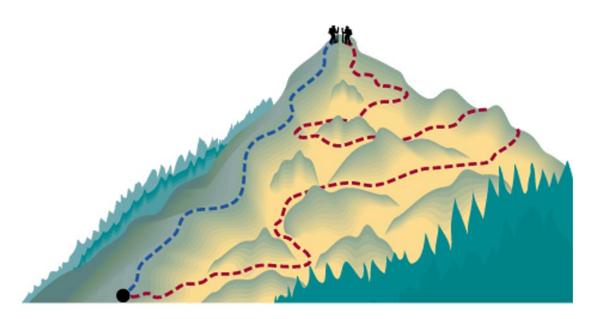

W = number of microstates 3 2 $S = k \ln W$ п №=4 $\Delta S = S_f - S_i$ $\Delta S = k \ln \frac{W_f}{W_i}$ 2 $W_f > W_i$ then $\Delta S > 0$ III W = 6 $W_f < W_i$ then $\Delta S < 0$ 3







18.3



How does the entropy of a system change for each of the following processes?

- (a) Condensing water vapor
 - Randomness decreases Entropy decreases ($\Delta S < 0$)
- (b) Forming sucrose crystals from a supersaturated solution
 - Randomness decreases Entropy decreases ($\Delta S < 0$)
- (c) Heating hydrogen gas from 60°C to 80°C
 - Randomness increases Entropy increases ($\Delta S > 0$)
- (d) Subliming dry ice
 - Randomness increases Entropy increases ($\Delta S > 0$)

Entropy

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. energy, enthalpy, pressure, volume, temperature, entropy

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

TABLE 18.1

Standard Entropy Values (S°) for Some Substances at 25°C

	S°		
Substance	(J/K · mol)		
$H_2O(l)$	69.9		
$H_2O(g)$	188.7		
$\operatorname{Br}_2(l)$	152.3		
$Br_2(g)$	245.3		
$I_2(s)$	116.7		
$I_2(g)$	260.6		
C (diamond)	2.4		
C (graphite)	5.69		
CH ₄ (methane)	186.2		
C ₂ H ₆ (ethane)	229.5		
$\operatorname{He}(g)$	126.1		
Ne(g)	146.2		

First Law of Thermodynamics

Energy can be converted from one form to another but energy cannot be created or destroyed.

Second Law of Thermodynamics

The entropy of the **universe** increases in a spontaneous process and remains unchanged in an equilibrium process.

Spontaneous process:

Equilibrium process:

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0$$

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = 0$$

Entropy Changes in the System (ΔS_{sys})

The standard entropy of reaction (ΔS_{rxn}^0) is the entropy change for a reaction carried out at 1 atm and 25°C.

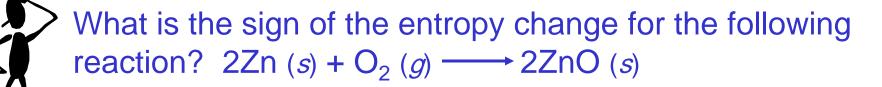
 $aA + bB \longrightarrow cC + dD$

 $\Delta S_{rxn}^{0} = [CS^{0}(C) + CS^{0}(D)] - [CS^{0}(A) + CS^{0}(B)]$

 $\Delta S_{rxn}^0 = \Sigma n S^0$ (products) - $\Sigma m S^0$ (reactants)

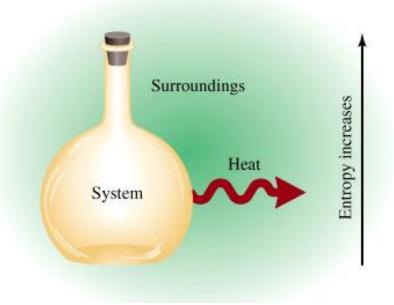
> What is the standard entropy change for the following reaction at 25°C? 2CO (g) + $O_2(g) \longrightarrow 2CO_2(g)$

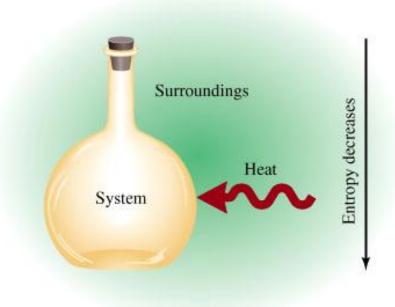
 $S^{0}(CO) = 197.9 \text{ J/K-mol}$ $S^{0}(CO_{2}) = 213.6 \text{ J/K-mol}$ $S^{0}(O_{2}) = 205.0 \text{ J/K-mol}$


 $\Delta S_{rxn}^{0} = 2 \times S^{0}(CO_{2}) - [2 \times S^{0}(CO) + S^{0}(O_{2})]$

 $\Delta S_{rxn}^0 = 427.2 - [395.8 + 205.0] = -173.6 \text{ J/K-mol}$

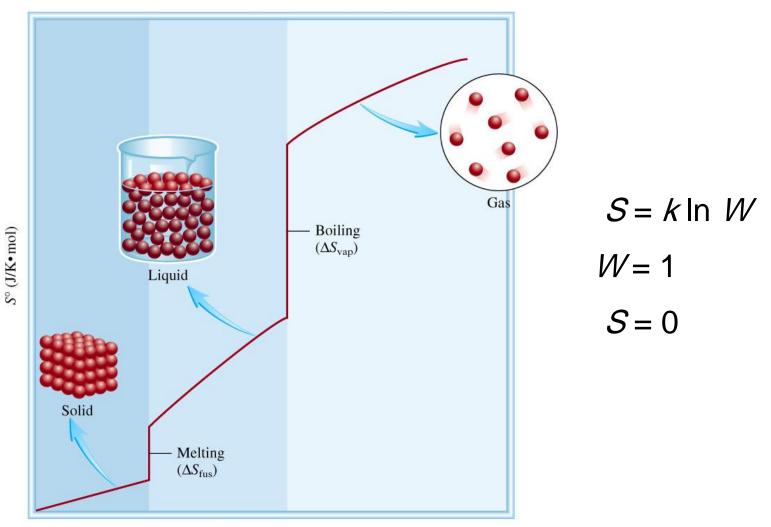
Entropy Changes in the System (ΔS_{sys})


When gases are produced (or consumed)


- If a reaction produces more gas molecules than it consumes, $\Delta S^0 > 0$.
- If the total number of gas molecules diminishes, $\Delta S^0 < 0$.
- If there is no net change in the total number of gas molecules, then ΔS^0 may be positive or negative BUT ΔS^0 will be a small number.

^J The total number of gas molecules goes down, ΔS is negative.

Entropy Changes in the Surroundings (ΔS_{surr})



Exothermic Process $\Delta S_{surr} > 0$

Endothermic Process $\Delta S_{surr} < 0$

Third Law of Thermodynamics

The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

Temperature (K)

Gibbs Free Energy

Spontaneous process: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$ Equilibrium process: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$

For a constant-temperature process:

- **Gibbs free** energy (G) $\Delta G = \Delta H_{sys} - T\Delta S_{sys}$
- $\Delta G < 0$ The reaction is spontaneous in the forward direction.
- $\Delta G > 0$ The reaction is nonspontaneous as written. The reaction is spontaneous in the reverse direction.
- $\Delta G = 0$ The reaction is at equilibrium.

The *standard free-energy of reaction (\Delta G_{rxn}^{0})* is the free-energy change for a reaction when it occurs under standard-state conditions.

$aA + bB \longrightarrow cC + dD$

 $\Delta G_{rxn}^{0} = \left[\mathcal{C} \Delta G_{f}^{0} \left(C \right) + \mathcal{A} \Delta G_{f}^{0} \left(D \right) \right] - \left[\mathcal{A} \Delta G_{f}^{0} \left(A \right) + \mathcal{B} \Delta G_{f}^{0} \left(B \right) \right]$

 $\Delta G_{rxn}^0 = \Sigma n \Delta G_f^0$ (products) - $\Sigma m \Delta G_f^0$ (reactants)

Standard free energy of

formation (ΔG_{f}^{0}) is the free-energy change that occurs when **1 mole** of the compound is formed from its elements in their standard states.

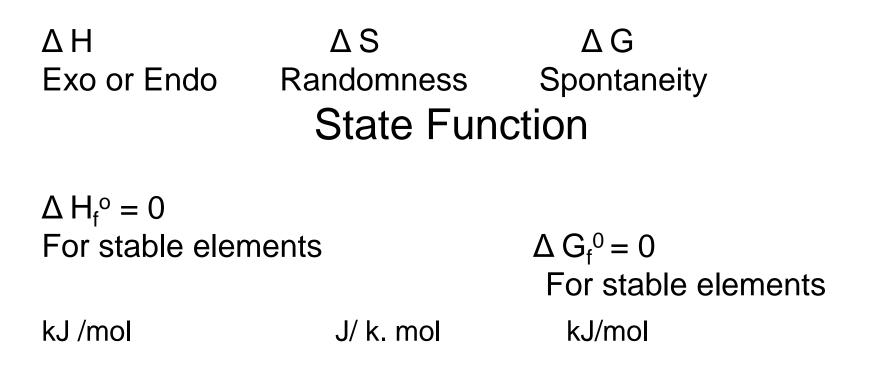

 ΔG_{f}^{0} of any element in its stable form is zero.

TABLE 18.2

Conventions for Standard States

State of Matter	Standard State	
Gas	1 atm pressure	
Liquid	Pure liquid	
Solid	Pure solid	
Elements*	$\Delta G_{\mathrm{f}}^{\circ} = 0$	
Solution	1 molar con- centration	

*The most stable allotropic form at 25°C and 1 atm.

 $\Delta S = 0$ for perfect crystalline material at 0 K

What is the standard free-energy change for the following reaction at 25 $^{\circ}C$?

$$2C_6H_6(h + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(h)$$

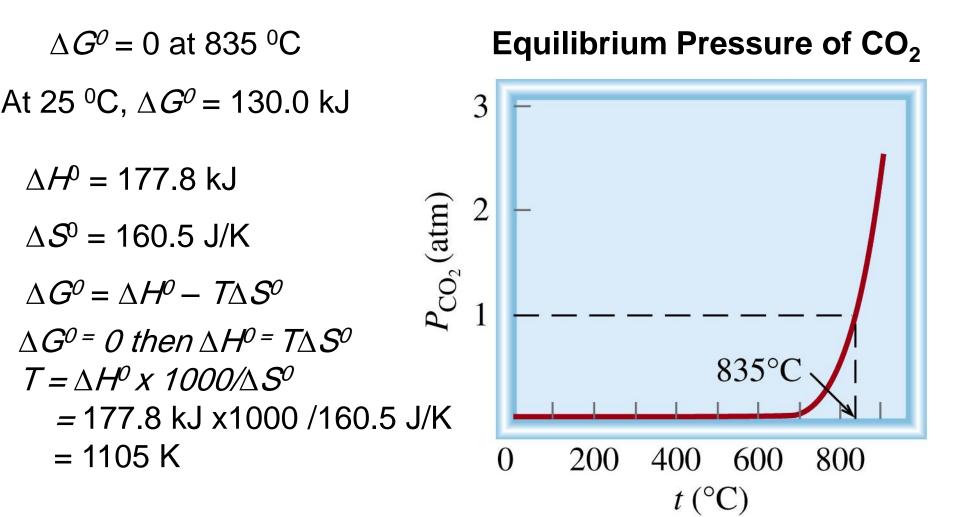
 $\Delta G_{rxn}^0 = \Sigma n \Delta G_f^0$ (products) - $\Sigma m \Delta G_f^0$ (reactants)

$$\Delta G_{rxn}^{0} = [12\Delta G_{f}^{0} (CO_{2}) + 6\Delta G_{f}^{0} (H_{2}O)] - [2\Delta G_{f}^{0} (C_{6}H_{6})]$$

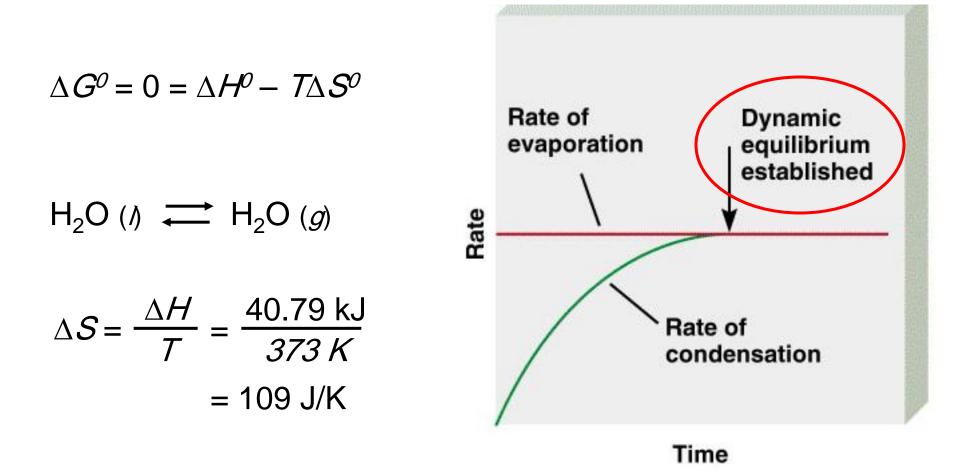
 $\Delta G_{rxn}^0 = [12x-394.4 + 6x-237.2] - [2x124.5] = -6405 \text{ kJ}$

Is the reaction spontaneous at 25 °C?

 $\Delta G^0 = -6405 \text{ kJ} < 0$

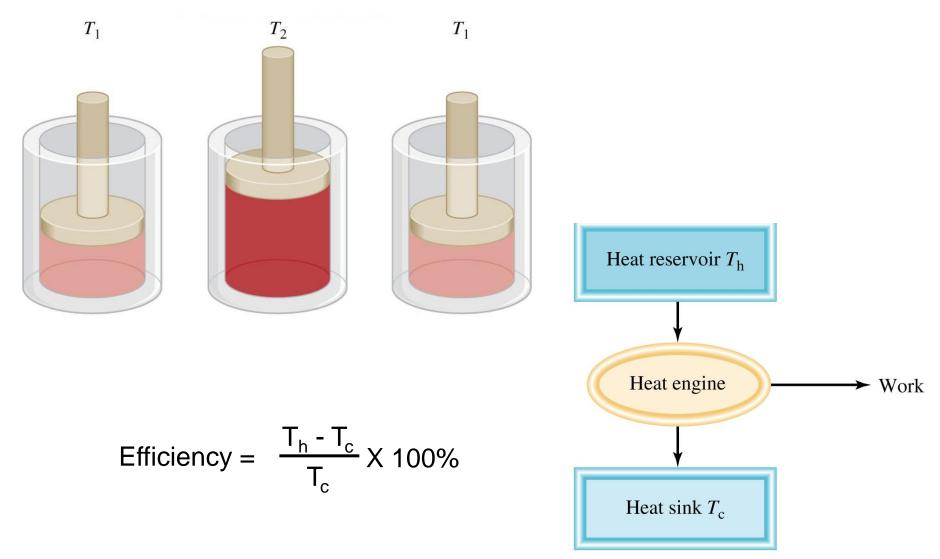

spontaneous

$\Delta G = \Delta H - T \Delta S$


TABLE 18.3		Factors Affecting the Sign of ΔG in the Relationship $\Delta G = \Delta H - T \Delta S$		
ΔН	ΔS	ΔG	Example	
+	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2 \text{HgO}(s) \longrightarrow 2 \text{Hg}(l) + \text{O}_2(g)$	
+	-	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3O_2(g) \longrightarrow 2O_3(g)$	
·-	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2\mathrm{H}_{2}\mathrm{O}_{2}(aq) \longrightarrow 2\mathrm{H}_{2}\mathrm{O}(l) + \mathrm{O}_{2}(g)$	
-	-	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$	

Temperature and Spontaneity of Chemical Reactions

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$



Gibbs Free Energy and Phase Transitions

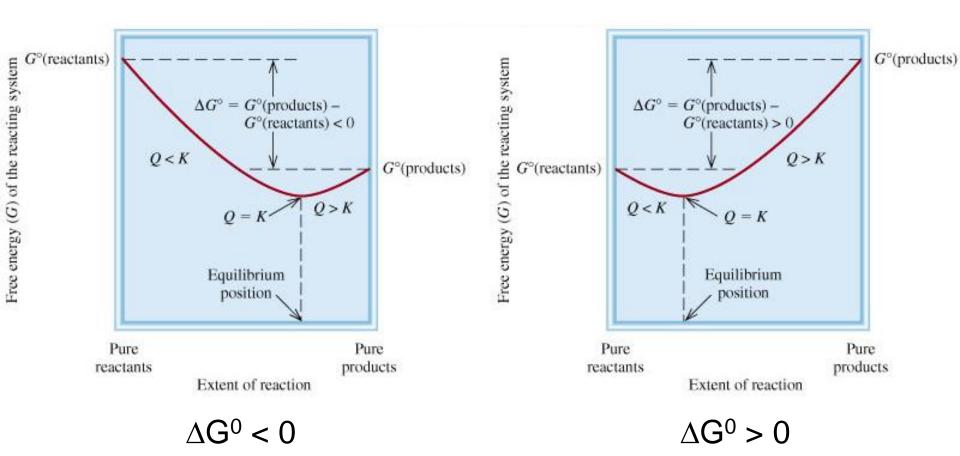
Chemistry In Action: The Efficiency of Heat Engines

A Simple Heat Engine

Gibbs Free Energy and Chemical Equilibrium

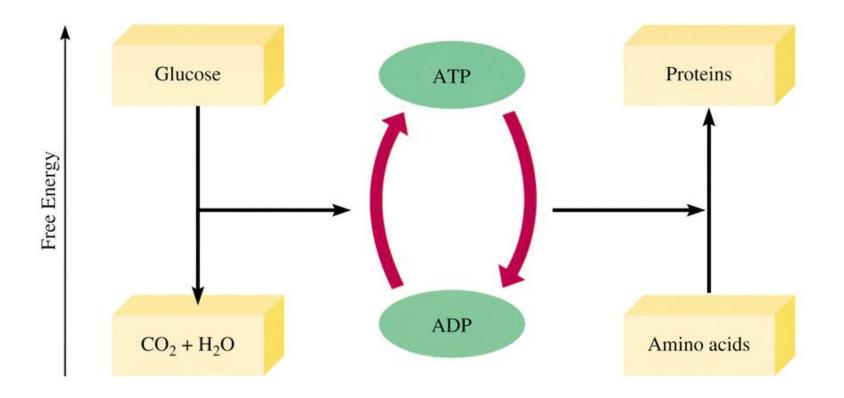
 $\Delta G = \Delta G^{0} + RT \ln Q$

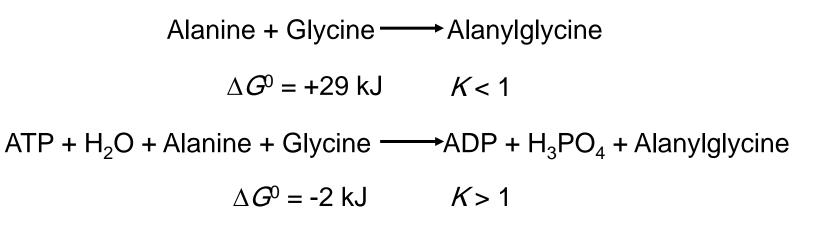
R is the gas constant (8.314 J/K•mol)

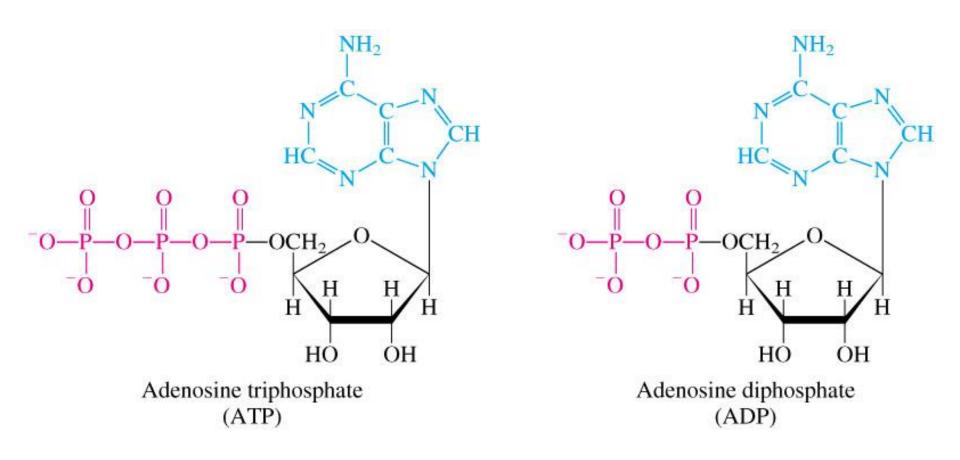

T is the absolute temperature (K)

Q is the reaction quotient Q = [Products] / [Reactants]

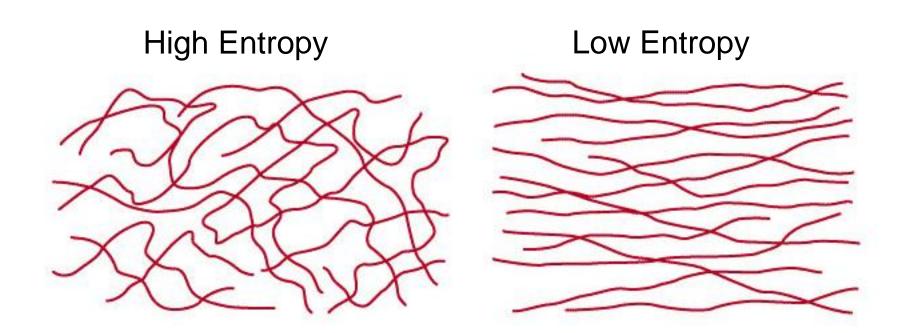
At Equilibrium


 $\Delta G = 0 \qquad Q = K$ $0 = \Delta G^{0} + RT \ln K$ $\Delta G^{0} = -RT \ln K \quad \text{Equilibrium constant}$


Free Energy Versus Extent of Reaction


$\Delta G^{0} = -RT \ln K$

IADLE 10.4		tion Betweeı = <i>-RT</i> In <i>K</i>	Between ΔG° and K as Predicted by the Equation $T \ln K$	
κ	In K		ΔG°	Comments
> 1	Posit	ive	Negative	Products are favored over reactants at equilibrium.
= 1	0		0	Products and reactants are equally favored at equilibrium.
< 1	Nega	tive	Positive	Reactants are favored over products at equilibrium.



The Structure of ATP and ADP in Ionized Forms

Chemistry In Action: The Thermodynamics of a Rubber Band

 $T \Delta S = \Delta H - \Delta G$

