CrystEngComm

COMMUNICATION

View Article Online

CrossMark ¢ dick for updates

Cite this: DOI: 10.1039/c4ce02186j

Received 3rd November 2014, Accepted 12th January 2015

DOI: 10.1039/c4ce02186j

www.rsc.org/crystengcomm

Bridging different Co₄-calix[4]arene building blocks into grids, cages and 2D polymers with chiral camphoric acid[†]

Kongzhao Su,^{ab} Feilong Jiang,^a Jinjie Qian,^{ab} Jiandong Pang,^{ab} Falu Hu,^{ab} Salem M. Bawaked,^c Mohamed Mokhtar,^c Shaeel A. Al-Thabaiti^c and Maochun Hong^{*a}

The employment of three different kinds of Co_4 -calix[4]arene molecular building blocks (MBBs) generated *in situ* with (1*R*,3*S*)-(+)-camphoric acid has resulted in different architectures ranging from a grid, to a chiral cage, to a 2D polymer. The sorption behaviors and magnetic properties of these have been investigated.

Thiacalixarenes, a kind of multidentate ligands with sulfurbridging phenolic groups, have been documented to be good candidates for the synthesis of polynuclear coordination compounds.¹ It is found that one thiacalix[4]arene molecule or one molecule of its oxidized derivative sulfonylcalix[4]arene (Fig. 1a) prefers to coordinate to four divalent transition metal (TM) ions by its four lower-rim phenolic oxygen atoms and four bridging sulfur/sulfonyl oxygen atoms. By bridging with a μ_3/μ_4 -X it forms shuttlecock-like cationic [TM₄(calix[4]arene)- (μ_3/μ_4-X) ^{Y+} molecular building blocks (MBBs).^{1d,2} These hold suitable curvature to be further linked into polynuclear coordination compounds with well-defined shapes and sizes or extended into 1D/2D structures, especially with the inclusion of anionic species (including anionic clusters, carboxylates, tetrazoles, carbonates and phosphates/phosphonates) for charge balance.³ For instance, they can be bridged into discrete Co₃₂ nanospheres with Co^{III}O₆ clusters,⁴ octahedral M_{24} (M = Mg, Co and Ni) coordination cages with di/tricarboxylates,⁵ high-nuclearity M_{4n} (M = Co or Ni, n = 2-6) nanocages with phosphate/phosphonate ligands, tetragonalprismatic Co_{32} cages by *in situ* generated bitetrazoles⁶ and two-dimensional metal-calixarene polymers comprising predesigned M₁₂ (M = Fe, Co) cages bridged with isonicotinates.⁷

In spite of the fact that it is facile to construct polymetallic complexes with different linkers from TM₄-calix[4]arene MBBs, there is no report on calixarene-based coordination complexes linked by chiral ligands, even though these are extensively used in the synthesis of homochiral metalorganic polymeric assemblies and frameworks with potential applications including heterogeneous asymmetric catalysis or enantioselective recognition/separation. Among these chiral ligands, the readily available (1R,3S)-(+)-camphoric acid (abbreviated as H₂CAM, Fig. 1a) is particularly appealing, since it possesses two carboxylic acid groups located in a suitable geometry to act as an excellent bent, divergent linker between metal cations. With a detailed search of the literature, there is a plethora of camphorate-based coordination complexes with intriguing structures and various nuclearities.8 However, coordination complexes based on MBBs and chiral ligands have rarely been described. In this work, we present three novel calix[4]arene-based coordination complexes utilizing (1R,3S)-(+)-camphoric acid (H₂CAM) as the linker, formed under solvothermal conditions. The molecular formulas for these three complexes are as follows: $[Co_8(BSC4A)_2(CAM)_2(\mu_4$ -H₂O)₂Cl₄]·9CH₃OH (1), [Co₈(BTC4A)₂(CAM)₃(µ₄-Cl)₂(CH₃OH)₂-(dma)₂]·0.5DMA·3CH₃OH (2), [Co₄(PTC4A)(CAM)(µ-HCOO)(µ₄- $Cl)(H_2O)(CH_3OH)_{1.7}(DMF)_{1.3}]_n$ (3) $(H_4BSC4A = p-tert-butyl$ sulfonylcalix[4]arene; H₄BTC4A = *p-tert*-butylthiacalix[4]arene; $H_4PTC4A = p$ -phenylthiacalix[4]arene; DMA = N,N'-dimethylacetamide; DMF = N,N'-dimethylformamide; dma = dimethylamine). Complex 1 features a window frame-like rhombus grid, and 2 presents the first chiral calixarene coordination nanocage, while 3 features a 2D polymer structure, novel in a metal-calixarene system. To the best of our knowledge, these coordination complexes give the first examples of complexes based on Co₄-calix[4]arene and chiral ligands. Herein, the preparations, crystal structures, magnetic properties and

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China. E-mail: hmc@fjirsm.ac.cn.

^b University of the Chinese Academy of Sciences, Beijing, 100049, China

^c Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

[†] Electronic supplementary information (ESI) available: Experimental procedures, crystallographic data in CIF format, supplementary figures, TGA analyses and PXRD patterns for complexes 1–3. CCDC 1024687 (1), CCDC 1024688 (2) and CCDC 1024689 (3). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ce02186j

Fig. 1 (a) The structures of ligands used in this paper. For H_4BTC4A , R = tBu, X = S; for H_4PTC4A , R = phenyl, X = S; for H_4BSC4A , R = tBu, $X = SO_2$. View of the molecular structures of complexes 1 (b) and 2 (c). (d) The extended structure of complex 3. The hydrogen atoms are omitted for clarity.

sorption behaviours of complexes 1-3 are presented and discussed.

Red block crystals of 1 were synthesized from a mixture of CoCl₂·6H₂O, H₄BSC4A and H₂CAM in CH₃OH solvent at 160 °C. Crystallographic analysis revealed that 1 crystallizes in the triclinic system and the structure solution was performed in the space group $P\overline{1}$. The structure features a window frame-like rhombus grid (Fig. 1b). Its asymmetric unit contains one Co₄-BSC4A MBB, one CAM²⁻ ligand and two bridged Cl⁻ anions. In this case, all four cobalt sites are bonded to the lower rim of a fully-deprotonated BSC4A⁴⁻ ligand in a cone conformation to form a Co₄-BSC4A shuttlecock-like MBB. All cobalt sites are six-coordinated in a distorted octahedron and coordinated by two phenolic O atoms and one S atom from one BSC4A4- ligand, one carboxylic O atom from one CAM²⁻ ligand, one μ_4 -O from a water molecule and one μ_2 -Cl. We noted that C43, C45 and C48 in the CAM²⁻ ligand showed disorder with their symmetrical equivalent positions with occupancies of 0.5 (see CIF file for details).[‡] Two Co₄-BSC4A MBBs are bridged by two inversionrelated CAM²⁻ ligands into a window frame-like rhombus grid, which is quite different from the reported Co₁₆ squares constructed by four Co₄-BSC4A MBBs with eight rigid 1,3benzenedicarboxylates.9

The reaction of H_4BTC4A and H_2CAM with $CoCl_2 \cdot 6H_2O$ in an acidic DMA-CH₃OH mixed solution resulted in the isolation of a chiral Co₈ coordination nanocage (2). Complex 2 is the only one in this series with a chiral space group *I*2 and a Flack parameter of 0.06(2), suggesting each single crystal is homochiral. Structural study revealed that it contains a Co₈ core, which is built by two Co₄-BTC4A MBBs as vertices and three CAM²⁻ ligands as linkers (Fig. 1c). Complex 2 has a crystallographic two-fold axis, so its asymmetric unit contains one BTC4A⁴⁻ ligand, one and a half CAM²⁻ ligands, one Cl⁻ anion, one *in situ* generated dma molecule, one CH₃OH molecule and four crystallographically unique Co(π) ions. All Co(π) sites are six-coordinated in a distorted octahedral environment and coordinated by two phenoxyl O atoms, one S atom, one μ_2 -Cl, one carboxylic O atom and one other component (a carboxylic O atom for Co1 and Co2, a CH₃OH for Co3 and a dma molecule for Co4). It should be noted that one CAM²⁻ ligand is in a general position, while the other one lies with some minor disorder about a twofold axis in this structure. Moreover, the CAM²⁻ ligands adopt two different kinds of coordination modes (Fig. S1†). Different from the reported Co₂₄ coordination nanocage with di/tri-carboxylates,^{5,10} this coordination nanocage contains a small inner cavity and has rather small ports, which hinder us from further studying its chiral encapsulation and recognition behavior.

Replacing the H₄PTC4A ligand with the H₄BTC4A ligand in a similar reaction to that for the preparation of 2 affords red block crystals of 3. Complex 3 crystallizes in an orthorhombic system with the space group Cmca and shows a novel calixarene-based 2D polymer structure (Fig. 1d). This reveals that the substituent of the upper-rim groups of the thiacalix[4]arene has an important influence on the resulting structure of the coordination complexes. Within the structure of 3, there are two crystallographically different cobalt sites, and both are six-coordinated and distorted octahedral in geometry. Except for two phenoxyl O atoms, two carboxyl O atoms, one S atom and one μ_4 -Cl, the Co1 site is still bound by one O from the formate ligand, which originates from the in situ decarbonylation of the DMF solvent, while the Co2 site is still coordinated by a disordered combination of DMF and CH₃OH, refined in a ratio of 65:35 (Fig. S2[†]). Co1, Co2, Co1A and Co2A (generated by the mirror symmetry operation through the (010) plane) are capped by a PTC4A4- ligand adopting a cone conformation to form a shuttlecock-like Co₄-PTC4A MBB. Then each MBB is connected by two CAM²⁻ ligands with some minor disorder and two HCOO⁻ anions, to form a calixarene-based 2D motif (Fig. S3[†]). The Co₄-PTC4A MBBs can be thought as four-connected nodes while the bridging CAM2- and HCOO- ligands act as two-connected linkers. Moreover, these HCOO⁻ anions are generated from the decarbonylation of DMF in a solvothermal environment

CrystEngComm

Fig. 2 Nitrogen gas sorption isotherms of activated complexes 1–3. Solid and open circles represent adsorption and desorption data, respectively.

according to the literature.^{3h} Although Liao and coworkers have presented two novel 2D metal–calixarene polymers that were designed and assembled by M_4 -BTC4A MBBs and {MCl₂} (M = Co, Fe) units and isonicotinates in very recent years,⁷ there is no example of a 2D network constructed from the deep-cavity Co₄-PTC4A MBBs.

In order to confirm the porosity of these supramolecular stacking structures, the N₂ adsorption properties of complexes 1–3 were measured at 77 K for the activated samples. As can be seen from Fig. 2, the N₂ sorption isotherm of 2 exhibits a pseudo-type I isotherm with a saturated uptake of 127 cm³ g⁻¹ at 77 K and 1.0 bar, characteristic of materials with permanent microporosity. The corresponding Langmuir and Brunauer-Emmett-Teller (BET) surface areas are 455 m² g⁻¹ and 317 m² g⁻¹, respectively. However, the experimental N₂ sorption values obtained for 1 and 3 are essentially negligible, suggesting their structural collapse and concomitant loss of porosity upon solvent removal. Moreover, the H₂, CO₂ and

Fig. 3 The temperature dependence of the magnetic susceptibilities of complexes 1–3 in a 1 kOe field.

 CH_4 adsorption for 2 were also examined and these are shown in Fig. S4.[†]

The variable-temperature magnetic measurements of complexes 1-3 were investigated on the polycrystalline samples in the temperature range of 2-300 K at an applied direct current magnetic field of 1 kOe (Fig. 3). At 300 K, the $\chi_m T$ values for complexes 1-3 are significantly higher than the expected values: observed 22.09, 21.68 and 11.88 cm³ K mol⁻¹ for 1-3, respectively (calculated values of 15, 15 and 7.5 cm³ K mol⁻¹ for 8, 8 and 4 uncoupled Co(II) ions, respectively). This can be attributed to the orbital moment as a consequence of spin-orbital coupling of the $Co(\pi)$ ions, which is known to be significant in an octahedral field.¹¹ Upon cooling, the $\chi_m T$ products for all three complexes continuously decrease to 0.31, 0.44 and 0.51 cm³ K mol⁻¹ at 2 K, respectively, characteristic of intramolecular antiferromagnetic interactions. The magnetic behaviors of complexes 1-3 are similar to those reported for calix[4]arene-based cobalt complexes.^{3a-g,4} Moreover, the magnetic data of complex 1 above 100 K obey the Curie–Weiss law $(1/\chi_m = T/C - \theta/C)$, giving a Curie constant $C = 28.01 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$ and a Weiss constant $\theta = -95.24 \text{ K}$, and fitting those of 2 and 3 above 50 K give C = 24.10 and 13.29 cm³ mol⁻¹ K and θ = -32.92 and -36.41 K for 2 and 3 (Fig. S5-S7[†]), respectively. The negative Weiss constants also indicate the presence of antiferromagnetic behavior between the spin carriers, and/or the spin-orbit coupling effect of Co(II) ions.

In summary, by employing three different kinds of Co_4 calix[4]arene MBBs with chiral H₂CAM ligands, we have obtained grids, chiral cages and 2D polymer structures. Complex 1 features a window frame-like rhombus and 2 presents the first chiral calixarene coordination nanocage, while 3 features a 2D polymer structure, novel in a metal-calixarene system. It is obvious that the introduction of chiral dicarboxylic acids leads to the formation of these fascinating structures. Moreover this work also presents a possible way to build metal-calixarene assemblies with chiral ligands, and efforts with other chiral ligands are also ongoing.

Acknowledgements

This work was financially supported by the 973 Program (2014CB932101), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102), and the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (1-130-1434-HiCi).

Notes and references

[‡] Crystal data for complex 1: C₁₀₉H₁₅₆O₄₃Cl₄S₈Co₈, *M*_r = 3024.21, triclinic, space group *P*I, *a* = 12.6110(3), *b* = 13.0901(6), *c* = 23.1334(11) Å, *α* = 86.751(4), *β* = 89.566(3), *γ* = 66.489(4), *V* = 3495.7(2) Å³, *Z* = 1, *F*(000) = 1566, *λ* = 1.54184 Å, *T* = 100(2) K, 2*θ*_{max} = 135.0, reflections collected/unique 26 472/12 438 (*R*_{int} = 0.0592), final *R*₁ = 0.0629, *wR*₂ = 0.1564, GooF = 0.978. Crystal data for complex 2: C₁₂₁H_{168.5}N_{2.5}O_{25.5}Cl₂S₈Co₈, *M*_r = 2865.06, monoclinic, space group *I*2, *a* = 11.7307(6), *b* = 21.7103(11), *c* = 27.7720(13) Å, *α* = 90, *β* = 89.317(5), *γ* = 90, *V* = 7072.4(6) Å³, *Z* = 2, *F*(000) = 2988, *λ* = 1.54184 Å, *T* = 100(2) K, 2*θ*_{max} = 140.0, reflections collected/unique 14 926/10 287 (*R*_{int} = 0.0645), final *R*₁ = 0.0771, *wR*₂ =

Communication

0.2223, GooF = 1.095. Crystal data for complex 3: $C_{62.6}H_{69.9}N_{1.3}O_{12}ClS_4Co_4$, M_r = 1431.89, orthorhombic, space group *Cmca*, *a* = 20.4878(9), *b* = 15.1811(6), *c* = 39.3306(11) Å, α = 90, β = 90, γ = 90, *V* = 12 232.9(8) Å³, *Z* = 8, *F*(000) = 5702, λ = 1.54184 Å, *T* = 100(2) K, $2\theta_{max}$ = 140.0, reflections collected/unique 15 591/6003 (R_{int} = 0.0327), final R_1 = 0.0869, w R_2 = 0.2359, GooF = 1.071. The diffraction data of 1 and 2 were treated by the "SQUEEZE" method routine in PLATON to subtract diffuse electron density. This had the effect of dramatically improving the agreement indices.

- 1 (a) N. Morohashi, F. Narumi, N. Iki, T. Hattori and S. Miyano, Chem. Rev., 2006, 106, 5291; (b) T. Kajiwara, N. Iki and M. Yamashita, Coord. Chem. Rev., 2007, 251, 1734; (c) P. P. Cholewa and S. J. Dalgarno, CrystEngComm, 2014, 16, 3655; (d) R. Kumar, Y. O. Lee, V. Bhalla, M. Kumar and J. S. Kim, Chem. Soc. Rev., 2014, 43, 4824; (e) Y. F. Bi, S. C. Du and W. P. Liao, Coord. Chem. Rev., 2014, 276, 61; (f) C.-M. Liu, D.-Q. Zhang, X. Hao and D.-B. Zhu, Chem. -Eur. J., 2011, 17, 12285; (g) C. Redshaw, M. R. J. Elsegood, J. A. Wright, H. Baillie-Johnson, T. Yamato, S. De Giovanni and A. Mueller, Chem. Commun., 2012, 48, 1129; (h) M. Yamada, Y. Shimakawa, Y. Kondo and F. Hamada, CrystEngComm, 2010, 12, 1311; (i) M. Yamada and F. Hamada, CrystEngComm, 2011, 13, 2494; (j) A. Gehin, S. Ferlay, J. M. Harrowfield, D. Fenske, N. Kyritsakas and W. Hosseini, Inorg. Chem., 2012, 51, 5481; (k) M. C. Desroches, G. Pilet, S. A. Borshch, S. Parola and D. Luneau, Inorg. Chem., 2005, 44, 9112; (l) T. Kajiwara, N. Kon, S. Yokozawa, T. Ito, N. Iki and S. Miyano, J. Am. Chem. Soc., 2002, 124, 11274.
- 2 T. Kajiwara, T. Kobashi, R. Shinagawa, T. Ito, S. Takaishi, M. Yamashita and N. Iki, *Eur. J. Inorg. Chem.*, 2006, 1765.
- 3 (a) Y. F. Bi, S. C. Du and W. P. Liao, Chem. Commun., 2011, 47, 4724; (b) Y. F. Bi, G. C. Xu, W. P. Liao, S. C. Du, X. W. Wang, R. P. Deng, H. J. Zhang and S. Gao, Chem. Commun., 2010, 46, 6362; (c) K. Su, F. Jiang, J. Qian, M. Wu, Y. Gai, J. Pan, D. Yuan and M. Hong, Inorg. Chem., 2014, 53, 18; (d) K. Xiong, F. Jiang, Y. Gai, Z. He, D. Yuan, L. Chen, K. Su and M. Hong, Cryst. Growth Des., 2012, 12, 3335; (e) C.-M. Liu, D.-Q. Zhang, X. Hao and D.-B. Zhu, Eur. J. Inorg.

Chem., 2012, 2012, 4210; (f) Y. F. Bi, W. P. Liao, G. C. Xu, R. P. Deng, M. Y. Wang, Z. J. Wu, S. Gao and H. J. Zhang, Inorg. Chem., 2010, 49, 7735; (g) H. Tan, S. Du, Y. Bi and W. Liao, Inorg. Chem., 2014, 53, 7083; (h) K. Xiong, F. Jiang, Y. Gai, Y. Zhou, D. Yuan, K. Su, X. Wang and M. Hong, Inorg. Chem., 2012, 51, 3283; (i) M. Liu and W. Liao, CrystEngComm, 2012, 14, 5727; (j) M. Liu, S. Du and W. Liao, J. Mol. Struct., 2013, 1049, 310; (k) M. Liu, S. Du, Y. Bi and W. Liao, Inorg. Chem. Commun., 2014, 41, 96.

- 4 Y. F. Bi, X. T. Wang, W. P. Liao, X. F. Wang, X. W. Wang,
 H. J. Zhang and S. Gao, *J. Am. Chem. Soc.*, 2009, 131, 11650.
- 5 (a) M. Liu, W. Liao, C. Hu, S. Du and H. Zhang, Angew. Chem., Int. Ed., 2012, 51, 1585; (b) F. R. Dai, U. Sambasivam,
 A. J. Hammerstrom and Z. Wang, J. Am. Chem. Soc., 2014, 136, 7480; (c) K. Xiong, F. Jiang, Y. Gai, D. Yuan, L. Chen,
 M. Wu, K. Su and M. Hong, Chem. Sci., 2012, 3, 2321.
- 6 S. W. Bi Yanfeng, M. Liu, S. Du and W. Liao, *Chem. Commun.*, 2013, 49, 6785.
- 7 H. Tan, S. Du, Y. Bi and W. Liao, *Chem. Commun.*, 2013, 49, 8211.
- 8 (a) J. Zhang, S. M. Chen, R. A. Nieto, T. Wu, P. Y. Feng and X. H. Bu, Angew. Chem., Int. Ed., 2010, 49, 1267; (b) J. Zhang, Y. G. Yao and X. H. Bu, Chem. Mater., 2007, 19, 5083; (c) P. Thuery, Cryst. Growth Des., 2009, 9, 4592; (d) P. Thuery and J. Harrowfield, CrystEngComm, 2014, 16, 2996; (e) M. L. Sun, J. A. Zhang, Q. P. Lin, P. X. Yin and Y. G. Yao, Inorg. Chem., 2010, 49, 9257; (f) J. Zhang, S. M. Chen, H. Valle, M. Wong, C. Austria, M. Cruz and X. H. Bu, J. Am. Chem. Soc., 2007, 129, 14168; (g) J. Zhang, S. M. Chen, A. Zingiryan and X. H. Bu, J. Am. Chem. Soc., 2008, 130, 17246.
- 9 F.-R. Dai, D. C. Becht and Z. Wang, *Chem. Commun.*, 2014, 50, 5385.
- 10 F.-R. Dai and Z. Wang, J. Am. Chem. Soc., 2012, 134, 8002.
- (a) M. Kurmoo, *Chem. Soc. Rev.*, 2009, 38, 1353; (b) F. Lloret,
 M. Julve, J. Cano, R. Ruiz-García and E. Pardo, *Inorg. Chim. Acta*, 2008, 361, 3432.