CHAPTER II

2.1 Which of the following species has the highest entropy (S°) at 25 °C?

(A) CH ₃ OH(I)	(B) CO (g)	(C) MgSO ₄ (s)	(D) H ₂ O (I)	
2.2 Arrange the follo	owing compounds in	order of increas	ing standard molar	entropy at25°C:
$C_3H_8(g)$, $C_2H_4(g)$, ZnS(s) , and H ₂ O(l)			
(B) $C_2H_4(g) < H_2$ (C) $ZnS(s) < C_3H$ (D) $C_3H_8(g) < C_2$	$O(I) < C_3H_8(g) < C_2H_4(g)$ $O(I) < C_3H_8(g) < ZnS(s)$ $O(I) < C_2H_4(g) < H_2O(I)$ $O(I) < C_2H_4(g) < C_3H_8(g)$ $O(I) < C_2H_4(g) < C_3H_8(g)$))		
	for the reaction =69.9 J/K.mol, S°(H₂S		• •	you know: S°(SO ₃) =256.2
(A) The reaction(C) The reaction	n is fast		(B) The reaction is (D) The reaction is	spontaneous
•	the atmosphere can of for this reaction at 1		• •	o₃(g)+NO(g)→NO₂(g)+O₂(g), ′K.mol)
(A)1020 kJ/mol	(B) -1.22x10 ³ kJ/mo	ol (C) -1.42x10	³ kJ/mol (D) -198	J/K.mol
2NaHCO₃(s)→Na	a ₂ CO ₃ (s)+CO ₂ (g)+H ₂ O(at minimum tempera			sodium bicarbonate: ol and ΔG°=33.1 kJ/mol at ontaneous under standard
(A) 0.4 K	(B) 3.9 K	(C) 321 K	(D) 401 I	<
following statem (A) The reaction (B) The reaction (C) ΔG° become		at low temperal temperatures. perature increa	cures ses.	.1 J/K.mol. Which of the
2.8 Determine the e $(\Delta G_f^{\circ}(NH_3(g))=$	quilibrium constant k 16.6 kJ/mol)	(p at 25°C for th	e reaction N ₂ (g)+3H	$H_2(g) \longleftrightarrow 2NH_3(g)$
(A) 1.52x10 ⁻⁶	(B) 6.60x10 ⁵	(C) 8.28	(D)	13.4

2.9	For the reaction 2C (g $P(C_2H_2)=0.10$ atm, calcu	. ,, -	$H_2(g)$, ΔG° =209.2 kJ/mol attion?	t 25°C. if P(H ₂)=100atm	and
	(A) 207.8kJ/mol	(B) 226.3 kJ/mol	(C) 192.1 kJ/mol	(D) 17.3 kJ/mol	
2.10 The values of ΔH° and ΔS° for the reaction CaCO₃(s) ⇒ CaO(s) + CO₂(g) are 177.8 kJ and 160.5 J/K, respectively. The pressure of CO₂ at equilibrium for the process at 800°C is (A) 1.04 atm.					

- (B) 12.3 atm
- (C) 0.535 atm
- (D) 4.35 atm