Entropy, Free Energy, and Equilibrium Chapter 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Entropy, Free Energy, and Equilibrium

Chapter Two Contains:
2.1 The Three Laws of Thermodynamics
2.2 Spontaneous Processes
2.3 Entropy
2.4 The Second Law of Thermodynamics
2.5 Gibbs Free Energy
2.6 Free Energy and Chemical Equilibrium
2.7 Thermodynamics in Living Systems

Spontaneous Physical and Chemical Processes

- A waterfall runs downhill
- A lump of sugar dissolves in a cup of coffee
- At 1 atm , water freezes below $0^{\circ} \mathrm{C}$ and ice melts above $0^{\circ} \mathrm{C}$
- Heat flows from a hotter object to a colder object
- A gas expands in an evacuated bulb
- Iron exposed to oxygen and water forms rust

spontaneous

nonspontaneous

18.2

Does a decrease in enthalpy mean a reaction proceeds

 spontaneously?
Spontaneous reactions

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{n} \quad \Delta \mathrm{H}^{0}=-890.4 \mathrm{~kJ}\right.$
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta \mathrm{H}^{0}=-56.2 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta \mathrm{H}^{0}=6.01 \mathrm{~kJ}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{3}{ }^{-}(a q) \Delta \mathrm{H} \mathrm{C}=25 \mathrm{~kJ}$

Entropy (S) is a measure of the randomness or disorder of a system.

$$
\Delta S=S_{f}-S_{i}
$$

If the change from initial to final results in an increase in randomness

$$
S_{\mathrm{f}}>S_{\mathrm{i}} \quad \Delta S>0
$$

For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state

$$
\begin{gathered}
S_{\text {solid }}<S_{\text {liquid }} \ll S_{\text {gas }} \\
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(1) \quad \Delta S>0
\end{gathered}
$$

Entropy
Distribution

$$
\text { I } W=1
$$

2	1
3	4
18.3	

Solid

Liquid

Processes that lead to an increase in entropy $(\Delta S>0)$

Solute

2.1 How does the entropy of a system change for each of the following processes?
(a) Condensing water vapor

Randomness decreases
Entropy decreases ($\Delta S<0$)
(b) Forming sucrose crystals from a supersaturated solution

Randomness decreases Entropy decreases ($\Delta S<0$)
(c) Heating hydrogen gas from $60^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$

Randomness increases
Entropy increases ($\Delta S>0$)
(d) Subliming dry ice

Randomness increases
Entropy increases ($\Delta S>0$)

Entropy

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. energy, enthalpy, pressure, volume, temperature, entropy

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

TABLE 18.1

S°

Substance	$(\mathbf{J} / \mathbf{K} \cdot \mathbf{m o l})$
$\mathrm{H}_{2} \mathrm{O}(l)$	69.9
$\mathrm{H}_{2} \mathrm{O}(g)$	188.7
$\mathrm{Br}_{2}(l)$	152.3
$\mathrm{Br}_{2}(g)$	245.3
$\mathrm{I}_{2}(s)$	116.7
$\mathrm{I}_{2}(g)$	260.6
C (diamond)	2.4
C (graphite)	5.69
CH_{4} (methane)	186.2
$\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane)	229.5
$\mathrm{He}(g)$	126.1
$\mathrm{Ne}(g)$	146.2

First Law of Thermodynamics

Energy can be converted from one form to another but energy cannot be created or destroyed.

Second Law of Thermodynamics

The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process.

Spontaneous process:
Equilibrium process:
$\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0$
$\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=0$

Entropy Changes in the System ($\Delta S_{\text {syst }}$)

The standard entropy of reaction ($\Delta \mathrm{S}_{\mathrm{rxn}}^{0}$) is the entropy change for a reaction carried out at 1 atm and $25^{\circ} \mathrm{C}$.

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta \mathrm{~S}_{\mathrm{rxn}}^{0}=\quad\left[c \mathrm{~S}^{0}(\mathrm{C})+d \mathrm{~S}^{0}(\mathrm{D})\right]-\left[a \mathrm{~S}^{0}(\mathrm{~A})+b \mathrm{~S}^{0}(\mathrm{~B})\right] \\
\Delta \mathrm{S}_{\mathrm{rxn}}^{0}=\Sigma n \mathrm{~S}^{0}(\text { products })-\Sigma m \mathrm{~S}^{0}(\text { reactants })
\end{gathered}
$$

2.2 What is the standard entropy change for the following reaction at $25^{\circ} \mathrm{C} ? 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \mathrm{S}^{0}(\mathrm{CO})=197.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \quad \mathrm{~S}^{0}\left(\mathrm{CO}_{2}\right)=213.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \mathrm{~S}^{0}\left(\mathrm{O}_{2}\right)=205.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \quad \Delta \mathrm{~S}_{\mathrm{rxn}}^{0}=2 \times \mathrm{S}^{0}\left(\mathrm{CO}_{2}\right)-\left[2 \times \mathrm{S}^{0}(\mathrm{CO})+\mathrm{S}^{0}\left(\mathrm{O}_{2}\right)\right] \\
& \Delta \mathrm{S}_{\mathrm{rxn}}^{0}=427.2-[395.8+205.0]=-173.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
\end{aligned}
$$

Entropy Changes in the System $\left(\Delta S_{\text {sys }}\right)$

When gases are produced (or consumed)

- If a reaction produces more gas molecules than it consumes, $\Delta S^{0}>0$.
- If the total number of gas molecules diminishes, $\Delta S^{0}<0$.
- If there is no net change in the total number of gas molecules, then ΔS^{0} may be positive or negative BUT ΔS^{0} will be a small number.

What is the sign of the entropy change for the following reaction? $2 \mathrm{Zn}(s)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ZnO}(s)$

The total number of gas molecules goes down, ΔS is negative.

Entropy Changes in the Surroundings $\left(\Delta S_{\text {surr }}\right)$

Exothermic Process

$$
\Delta S_{\text {surr }}>0
$$

Endothermic Process

$$
\Delta S_{\text {surr }}<0
$$

$\Delta S_{\text {surr }} \alpha-\Delta \mathrm{H}_{\text {sys }}$
$\Delta S_{\text {surr }} \propto \frac{1}{T} \quad \Delta S_{\text {surr }}=-\frac{\Delta \mathrm{H}_{\text {sys }}}{T}$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta H^{\circ}{ }_{\mathrm{r} \times \mathrm{n}}=-92.6 \mathrm{~kJ} / \mathrm{mol}
$$

Example 2.3 Is the following reaction is spontaneous at $25^{\circ} \mathrm{C}$, where $\Delta S_{\text {sys }}$ is $-199 \mathrm{~kJ} / \mathrm{mol}$.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta H^{\circ}{ }_{\mathrm{r} \times \mathrm{n}}=-92.6 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta S_{\text {surr }}=-\frac{\Delta \mathrm{H}_{\text {sys }}}{T}=-\frac{(-92.6 \times 1000) \mathrm{J} / \mathrm{mol}}{298 \mathrm{~K}}=311 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }} \\
& \Delta S_{\text {univ }}=-199+311=112 \mathrm{~J} / \mathrm{K} . \mathrm{mol}
\end{aligned}
$$

Because $\Delta S_{\text {univ }}$ is positive, we predict that the reaction is spontaneous at $25^{\circ} \mathrm{C}$.

Third Law of Thermodynamics

The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

Gibbs Free Energy

Spontaneous process: $\quad \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0$
Substituting $-\Delta \mathrm{H}_{\text {sys }} / T$ for $\Delta S_{\text {surr }}$ we write

$$
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}-\frac{\Delta \mathrm{H}_{\text {sys }}}{T}>0
$$

Multiply both sides of the equation by T gives

$$
\mathrm{T} \Delta S_{\mathrm{univ}}=-\Delta \mathrm{H}_{\mathrm{sys}}+\mathrm{T} \Delta S_{\mathrm{sys}}>0
$$

Multiply by -1 and replacing sign $>$ with $<$:

$$
-\mathrm{T} \Delta S_{\text {univ }}=\Delta \mathrm{H}_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }}<0
$$

$>$ This means if $\Delta \mathrm{H}_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }}<0$, the process must be spontaneous
$>$ Now in order to be express the spontaneity of a reaction more directly, we introduce another thermodynamic function called

Gibbs free energy (G)

For a constant-temperature process:

Gibbs free energy (G)

$$
\Delta \mathrm{G}=\Delta \mathrm{H}_{\mathrm{sys}}-\mathrm{T} \Delta \mathrm{~S}_{\mathrm{sys}}
$$

$\Delta G<0 \quad$ The reaction is spontaneous in the forward direction.
$\Delta \mathrm{G}>0 \quad$ The reaction is nonspontaneous as written. The reaction is spontaneous in the reverse direction.
$\Delta \mathrm{G}=0 \quad$ The reaction is at equilibrium.

The standard free-energy of reaction ($\Delta G_{1 \times n}^{0}$) is the freeenergy change for a reaction when it occurs under standardstate conditions.

$$
\begin{gathered}
a A+b B \longrightarrow c C+d D \\
\Delta G_{r x n}^{0}=\left[c \Delta G_{f}^{0}(C)+d \Delta G_{f}^{0}(\mathrm{D})\right]-\left[a \Delta G_{f}^{0}(\mathrm{~A})+b \Delta G_{f}^{0}(\mathrm{~B})\right] \\
\Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{G}_{\mathrm{f}}^{0}(\text { products })-\Sigma m \Delta \mathrm{G}_{f}^{0}(\text { reactants })
\end{gathered}
$$

Standard free energy of formation ($\Delta \mathrm{G}_{\mathrm{f}}^{0}$) is the free-energy change that occurs when 1 mole of the compound is formed from its elements in their standard states.
ΔG_{f}^{0} of any element in its stable form is zero.

TABLE 18.2

Conventions for Standard States	
State of	Standard
Matter	State
Gas	1 atm pressure
Liquid	Pure liquid
Solid	Pure solid
Elements*	$\Delta G_{\mathrm{f}}^{\circ}=0$
Solution	1 molar con- centration

*The most stable allotropic form at $25^{\circ} \mathrm{C}$

$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	$\triangle \mathrm{G}$
Change in enthalpy	Change in entropy	Change in Gibbs free energy
$\Delta \mathrm{H}<0$ exothermic $\Delta \mathrm{H}>0$ endothermic	$\Delta S<0$ order $\Delta S>0$ disorder	$\Delta G<0$ Spontaneous $\Delta G>0$ Non-spontaneous
KJ/mol	J / K.mol	KJ/mol
State function	State function	State function
$\Delta \mathrm{H}^{\circ}{ }_{\text {formation }}$ of stable element at $25^{\circ} \mathrm{C}$ and 1 atm. $=0$	$\Delta S^{\circ}=0$ for perfect crystalline substance at OK	$\Delta \mathrm{G}^{\circ}{ }_{\text {formation }}$ of stable element at $25^{\circ} \mathrm{C}$ and 1 atm . $=0$

Example 2.4 What is the standard free-energy change for the following reaction at $25^{\circ} \mathrm{C}$?

$$
\begin{gathered}
2 \mathrm{C}_{6} \mathrm{H}_{6}(\Lambda)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Lambda) \\
\Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{G}_{\mathrm{f}}^{0}(\text { products })-\Sigma m \Delta \mathrm{G}_{\mathrm{f}}^{0}(\text { reactants }) \\
\Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\left[12 \Delta \mathrm{G}_{\mathrm{f}}^{0}\left(\mathrm{CO}_{2}\right)+6 \Delta \mathrm{G}_{f}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[2 \Delta \mathrm{G}_{\mathrm{f}}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \\
\Delta \mathrm{G}_{\mathrm{rxn}}^{0}=[12 \mathrm{x}-394.4+6 \mathrm{x}-237.2]-[2 \times 124.5]=-6405 \mathrm{~kJ}
\end{gathered}
$$

Is the reaction spontaneous at $25^{\circ} \mathrm{C}$?

$$
\Delta G^{0}=-6405 \mathrm{~kJ}<0
$$

spontaneous

$\Delta G=\Delta H-T \Delta S$

TABLE 18.3		Factors Affecting the Sign of ΔG in the Relationship $\Delta G=\Delta H-T \Delta S$	
ΔH	ΔS	ΔG	Example
$+$	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
$+$	-	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
-	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g})$
-	-	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

Temperature and Spontaneity of Chemical Reactions

$$
\mathrm{CaCO}_{3}(s) \rightleftarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

$\Delta H^{0}=177.8 \mathrm{~kJ}$
$\Delta S^{0}=160.5 \mathrm{~J} / \mathrm{K}$
$\Delta G^{0}=\Delta H^{0}-T \Delta S^{0}$
At $25^{\circ} \mathrm{C}, \Delta G^{0}=130.0 \mathrm{~kJ}$
$\Delta G^{0}=0$ at $835^{\circ} \mathrm{C}$

The nearest highest temperature Above $835^{\circ} \mathrm{C}$ causes the reaction

Equilibrium Pressure of CO_{2}
 To be spontaneous as written

Gibbs Free Energy and Phase Transitions

$$
\begin{aligned}
& \Delta G^{0}=0=\Delta H^{0}-T \Delta S^{0} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \begin{aligned}
\Delta S=\frac{\Delta H}{T} & =\frac{40.79 \mathrm{~kJ}}{373 \mathrm{~K}} \\
& =109 \mathrm{~J} / \mathrm{K}
\end{aligned}
\end{aligned}
$$

Time

Example 2.5:

The molar heats of fusion and vaporization of benzene are 10.9 $\mathrm{kJ} / \mathrm{mol}$ and $31.0 \mathrm{~kJ} / \mathrm{mol}$, respectively. Calculate the entropy changes for the solid to liquid and liquid to vapor transitions for benzene. At 1 atm pressure, benzene melts at $5.5^{\circ} \mathrm{C}$ and boils at $80.1^{\circ} \mathrm{C}$.
for the solid to liquid

$$
\Delta S=\frac{\Delta H}{T}=\frac{10.9 \mathrm{~kJ} / \mathrm{mol}}{278.5 \mathrm{~K}}=0.0391 \mathrm{~kJ} / \mathrm{K}=39.1 \mathrm{~J} / \mathrm{K} . \mathrm{mol}
$$

For liquid to vapor
You try it

Example 2.6: At what temperatures is the following process spontaneous at 1 atm ? What is the normal boiling point of Br_{2} ?
$\left(\Delta S^{\circ}=93.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \Delta \mathrm{H}^{\circ}=31.0 \mathrm{~K} \mathrm{~J} \mathrm{~mol}^{-1}\right)$

$$
\begin{gathered}
\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g}) \\
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
\end{gathered}
$$

The system is at equilibrium $\quad \Delta G^{\circ}=0$

$$
\Delta \mathrm{H}^{\circ}=\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

$$
\begin{aligned}
\mathrm{T}= & \Delta \mathrm{H}^{\circ} / \Delta \mathrm{S}^{\circ}=31 \times 1000 \mathrm{~J} / 93 \mathrm{~J} / \mathrm{K} . \mathrm{mol} \\
& =333.33 \mathrm{~K}=60.33^{\circ} \mathrm{C}
\end{aligned}
$$

Gibbs Free Energy and Chemical Equilibrium

$$
\Delta G=\Delta G^{0}+R T \ln Q
$$

R is the gas constant ($8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$)
T is the absolute temperature (K)
Q is the reaction quotient $\quad Q=$ [Products] / [Reactants]

At Equilibrium

$$
\begin{aligned}
& \Delta G=0 \quad Q=K \\
& 0=\Delta G^{0}+R T \ln K \\
& \Delta G^{0}=-R T \ln K \quad \text { Equilibrium constant }
\end{aligned}
$$

Free Energy Versus Extent of Reaction

$\Delta \mathrm{G}^{0}<0$

$\Delta \mathrm{G}^{0}>0$

$$
\Delta G^{0}=-R T \ln K
$$

Relation Between $\Delta \mathbf{G}^{\circ}$ and K as Predicted by the Equation

 $\Delta G^{\circ}=-R T \ln K$| \boldsymbol{K} | $\boldsymbol{\operatorname { l n } \boldsymbol { K }}$ | $\boldsymbol{\Delta} \boldsymbol{G}^{\circ}$ | Comments |
| :--- | :--- | :--- | :--- |
| >1 | Positive | Negative | Products are favored over reactants at equilibrium. |
| $=1$ | 0 | 0 | Products and reactants are equally favored at
 equilibrium. |
| <1 | Negative | Positive | Reactants are favored over products at equilibrium. |

Example 2.7:

Using data listed in Appendix 3, calculate the equilibrium constant (K_{P}) for the following reaction at $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\Delta G^{0}=-R T \ln K
$$

$$
\begin{aligned}
& \Delta G_{\mathrm{rxn}}^{\circ}=\left[2 \Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2}\right)+\Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)\right]-\left[2 \Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \\
&= {[(2)(0 \mathrm{~kJ} / \mathrm{mol})+(0 \mathrm{~kJ} / \mathrm{mol})]-[(2)(-237.2 \mathrm{~kJ} / \mathrm{mol})] } \\
&=474.4 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{rxn}}^{\circ}=-R T \ln K_{P} \\
& 474.4 \mathrm{~kJ} / \mathrm{mol} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}=-(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K}) \ln K_{P} \\
& \ln K_{P}=-191.5 \\
& K_{P}=e^{-191.5}=7 \times 10^{-84}
\end{aligned}
$$

Example 2.8:
The equilibrium constant (K_{p}) for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.113 at 298 K , which corresponds to a standard freeenergy change of $5.40 \mathrm{~kJ} / \mathrm{mol}$. In a certain experiment, the initial pressures are $\mathrm{P}_{\mathrm{NO} 2}=0.122 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}=0.453 \mathrm{~atm}$. Calculate ΔG for the reaction at these pressures and predict the direction of the net reaction toward equilibrium.

$$
\begin{aligned}
\Delta G & =\Delta G^{\circ}+R T \ln Q_{P} \\
& =\Delta G^{\circ}+R T \ln \frac{P_{\mathrm{NO}_{2}}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}} \\
& =5.40 \times 10^{3} \mathrm{~J} / \mathrm{mol}+(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K}) \times \ln \frac{(0.122)^{2}}{0.453} \\
& =5.40 \times 10^{3} \mathrm{~J} / \mathrm{mol}-8.46 \times 10^{3} \mathrm{~J} / \mathrm{mol} \\
& =-3.06 \times 10^{3} \mathrm{~J} / \mathrm{mol}=-3.06 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Spontaneous from left to right

Example: For the reaction; $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$ $, \Delta \mathrm{S}^{\circ}=285 \mathrm{~J} / \mathrm{K}, \Delta \mathrm{H}^{\circ}=177 \mathrm{KJ}$ and $\Delta \mathrm{G}^{\circ}=91.9 \mathrm{KJ}$ at $25^{\circ} \mathrm{C}$.
i) Is the reaction spontaneous at $25^{\circ} \mathrm{C}$?
ii)Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not change with temperature; calculate $\Delta \mathrm{G}$ at $500^{\circ} \mathrm{C}$.
iii) Is the reaction spontaneous at $500^{\circ} \mathrm{C}$?
i) since $\Delta \mathrm{G}^{\circ}$ is +ve value (+91.9 KJ) the reaction is nonspontaneous.
ii) $\Delta G=\Delta H^{\circ}-T \Delta S^{\circ}$

$$
\begin{aligned}
& \mathrm{T}=500+273=773 \mathrm{~K} \\
& \Delta \mathrm{G}=177-773 \times 285 / 1000=177-220.3=-43.3 \mathrm{KJ} .
\end{aligned}
$$

iii) since $\Delta \mathrm{G}$ is -ve value (-43.3 KJ) at $500^{\circ} \mathrm{C}$, the reaction is spontaneous.

