1. An electron can be represented by _____.

- A) $_{0}^{-1}e$
- B) $_{-1}^{0}e$
- C) 0 e
- D) -1₋₁e

2. In the equation

$$^{26}_{12}$$
Mg + $^{1}_{1}$ p \longrightarrow $^{4}_{2}\alpha$ + X

'X' is the element _____.

- A) Be
- B) Ne
- C) Na
- D) K

3. 'X' in the equation $^{59}_{27}\text{Co} + ^{2}_{1}\text{H} \longrightarrow ^{60}_{27}\text{Co} + \text{X}$ is _____.

- A) ${}_{2}^{4}\alpha$
- B) ${}_{1}^{1}p$
- C) ${}_{-1}^{0}\beta$
- D) ${}_{1}^{0}\beta$

4. Species 'X' in the equation $^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{94}_{36}Kr + ^{139}_{56}Ba + 3X$ is a(an) _____.

- A) proton
- B) positron
- C) neutron
- D) electron

5. Chromium-53 on bombardment with α -particles yields _____ and a neutron.

- A) 56 Fe
- B) 57 Co
- C) 56 Ni
- D) 56 Co

6.	disintegrates into ${}^{9}_{9}$ F and A) ${}^{0}_{-1}\beta$ B) ${}^{1}_{1}H$ C) ${}^{0}_{1}\beta$ D) ${}^{1}_{0}n$
7.	disintegrates into and a β-particle. A) Xe B) At C) Rn D) Cs
8.	40 K emits a β-particle and yields A) Mg B) Ar C) Ca D) Ba
9.	When a cobalt-59 nucleus is bombarded with a neutron, the products are manganese-56 and a(an) A) α -particle B) β -particle C) positron D) proton
10.	On bombardment with a neutron, uranium-235 yields 99 Sr, 135 Te and A) $^{1}_{1}$ H B) $^{2}_{0}$ n C) $^{2}_{1}$ H D) $^{4}_{2}$ He
11.	Identify the nuclear magic number: A) 10 B) 20 C) 40 D) 54

12.		is not a nuclear magic number.
	A)	2
	B)	50
	C)	82

- 13. Nuclear belt stability is based on the _____ ratio.
 - A) <u>e</u> <u>n</u>
 B) <u>e</u> <u>p</u>
 C) <u>e</u> <u>m</u>
 D) <u>n</u> <u>p</u>

D) 36

- 14. The _____ nucleus does not exist.
 - A) (24 Na
 - B) ³₂He C) ³⁷₁₇Cl

 - D) ²₂He
- 15. The equation used to calculate nuclear binding energy is _____.
 - A) E = hv
 - B) $E = mc^2$

 - D) E = mvr
- 16. The density of an atomic nucleus is on the order of _____ g/cm³.
 - A) 10^2
 - B) 10^{27}
 - C) 10^{14}
 - D) 10^5

17.	The radius of an atomic nucleus is approximately pm. A) 10^{-9} B) 10^{-12} C) 10^{-3} D) 10^{-8}
18.	The most stable nucleus shown below is A) \$\begin{array}{l} 48 \\ 20 \) Ca B) \$\begin{array}{l} 48 \\ 21 \) Sc C) \$\begin{array}{l} 9 \\ 11 \) Na D) \$\begin{array}{l} 23 \\ 11 \) Na
19.	Of the following nuclei, only is radioactive. A) ${}^{60}_{27}$ Co B) ${}^{40}_{20}$ Ca C) ${}^{20}_{10}$ Ne D) ${}^{23}_{11}$ Na
20.	The binding energy per nucleon of fluorine-19 (18.9984 amu) is A) 1.25×10^{-12} J B) 1.25×10^{-6} J C) 3.02×10^{5} J D) 6.023×10^{8} J
21.	The binding energy per nucleon of 127 I (126.9004 amu) is A) 1.36×10^{12} J B) 4.32×10^{-6} J C) 1.36×10^{-12} J D) 4.32×10^{6} J
22.	The binding energy of an atom per nucleon is on the order of A) 10^{-6} J B) 10^{-8} J C) 10^{-12} J D) 10^{-10}

23.	²³² Th decays to ²²⁸ Th. The numbers of α and β -particles produced are A) 1 α , 2 β B) 2 α , 1 β C) 2 α , 2 β D) 1 α , 1 β
24.	Radioactive decay follows order kinetics. A) zero B) second C) first D) third
25.	The half-life of Tl-206 decay to Pb-206 is 4.20 minutes. Starting with 5.00×10^{22} atoms of Tl-206, the number of Tl atoms left after 42.0 minutes is A) 4.89×10^{19} B) 2.12×10^{21} C) 9.72×10^{17} D) 7.50×10^{15}
26.	The rate law for radioactive decay is A) Rate = k B) Rate = λN^2 C) Rate = λN D) Rate = λ/N
27.	232 Th loses six α and four β particles. The final isotope produced is A) Pb-208 B) Bi-208 C) Pb-206 D) Po-208
28.	The half-life of strontium-90 is 28.1 yr. A 1.00 g of ⁹⁰ Sr will be reduced to 0.200 g by decay in the time A) 56.2 yrs B) 65.2 yrs C) 75.3 yrs D) 52.4 yrs

• •	
29.	Consider the decay series $A \rightarrow B \rightarrow C \rightarrow D$ where A, B and C are radioactive isotopes with half-lives of 4.50 s, 15.0 days, and 1.00 s, respectively. Starting with 1.00 mol of A,
	the number of moles of A left after 30 days is A) 0.001
	B) 0.01
	C) 0.1 D) zero
	D) ZC10
30.	One element can be converted into another by nuclear
	A) reduction
	B) oxidationC) transmutation
	D) deceleration
31.	In the reaction $X(p,\alpha) {}_{6}^{12}C$, X is
	A) ¹⁴ ₇ N
	B) ½ N
	C) 16 O
	D) ${}^{16}_{7}$ N
	>
32.	X in the reaction 27 Al(d, α)X is
	A) $^{27}_{11}$ Na
	B) $\frac{20}{18}$ Ar
	C) $^{25}_{12}$ Mg
	D) $^{23}_{18}$ Ar
22	555.6.2
33.	The isotope produced in the reaction 25 is
	A) Mn-56 B) Fe-56
	C) Co-56
	D) Ni-57

34.	The projectile used to convert ${}^{80}_{34}$ Se into ${}^{81}_{34}$ Se and ${}^{1}_{1}$ H is
	A) $\frac{1}{0}$ n
	B) 4He
	C) ² ₁ H
	· ·
	D) 2_0^1 n
35.	The target nuclei, X in the reaction $X(d, 2p)_3^9 Li$ is
	A) ${}_{5}^{9}$ B
	B) ⁹ ₄ Be
	C) ⁹ ₃ Li
	D) 14 N
36.	10 R (n, n) Y
20.	The species X in the reaction 3 1s
	A) ⁷ ₃ Li
	B) ⁸ ₃ L _i
	C) ⁹ ₃ Li
	D) ⁷ ₄ Be
	•
37.	Heavier nuclei are broken down into smaller nuclei by nuclear
	A) fusionB) transmutation
	C) fission
	D) oxidation
38	A self-sustained nuclear fission reaction is called a
50.	A) chain reaction
	B) reversible reaction
	C) fusion
	D) fragmentation
39.	The moderator in a nuclear reactor
	A) reduces the energy of neutrons
	B) increases the energy of neutrons
	C) increases the number of neutrons D) reduces the number of neutrons

40.	The material in a nuclear reactor that reduces the number of neutrons is called a
	A) reducer
	B) moderator
	C) control rod
	D) reflector
41	can be used as a moderator in nuclear reactors.
	A) D ₂ O
	B) Na
	C) O_2
	D) H ₂
42	The control and a read in a muslean according
42.	The control rods used in a nuclear reactor are
	A) Ca
	B) Cu
	C) Cd
	D) Cs
43.	In a nuclear reactor, boron is used as
	A) control rods
	B) a coolant
	C) a monitor
	D) a moderator
	227
44.	The percentage of ²³⁵ U in naturally occurring uranium is
	A) 7%
	B) 70%
	C) 0.7%
	D) 0.07%
45	Nuclear fuel consists of uranium in the form of
	A) U_3O_8
	B) U_2SO_4
	C) UO ₂
	, =
	D) U_3SiO_3

46.	A b	reeder reactor produces
		more fissionable materials than it uses
	B)	less fissionable materials than it uses
		stable nuclei only
	D)	light nuclei only
47.		union of smaller nuclei into larger nuclei is nuclear
	,	fusion
		fission
		fragmentation
	D)	transmutation
40	TC1	1 2 6 11 1 2
48.		ermonuclear reactions are often called reactions.
	,	fission
	,	fertile
		fusion the among dynamics
	D)	thermodynamic
49	Δn	lasma is a
1).	-	gas consisting of positive ions
		gaseous mixture of positive ions and electrons
		liquid mixture of positive ions and electrons
		solid mixture of positive and negative ions
	D)	solid illixture of positive and negative ions
50.	The	correct statement is:
		Lighter elements undergo nuclear fission
		Heavier elements undergo nuclear fission
		Heavier elements undergo nuclear fusion
		Lighter elements undergo nuclear fusion and fission
	,	
51.	A h	ydrogen bomb works under the principle of
	A)	nuclear fission
	,	moderation
		nuclear fusion
	D)	nuclear oxidation

52.	The mechanism of the following reaction (I* = 128 I) shows that: $^{*}IO_{4}^{-}(aq) + 2I^{-}(aq) + H_{2}O(l) \longrightarrow ^{*}I_{2}(s) + IO_{3}^{-}(aq) + OH^{-}(aq)$ A) Γ is oxidized to IO_{3}^{-} B) IO_{4}^{-} is reduced to IO_{3}^{-} C) I_{2} is formed from Γ D) I_{2} is formed from Γ and IO_{4}^{-}
53.	cannot be used as a radioactive tracer. A) ²⁴ Na B) ¹²⁸ I C) ⁵⁹ Fe D) ³⁵ Cl
54.	The most stable nuclei will have the number of neutrons and protons as A) odd-odd B) even-even C) odd-even D) even-odd
55.	The species X in the equation ${}^{3}_{1}H \longrightarrow {}^{3}_{2}He + X$ is A) ${}^{0}_{+1}e$ B) ${}^{1}_{1}H$ C) ${}^{0}_{-1}e$ D) ${}^{2}_{1}H$
56.	The ratio of ${}^{1}H$ to ${}^{3}H$ in ordinary water is 1.0×10^{17} to $1.$ disintegrations per minute will be observed from 1.000 kg water. (The half-life of ${}^{3}H$ is 12.5 yrs) A) 70. B) 16. C) 40. D) 96.
57.	A unit of radioactivity is A) the joule B) the curie C) the röngten D) the becquerel

58.	One curie corresponds to disintegration/s. A) 3.00×10^7 B) 1.00×10^{10} C) 3.70×10^{10} D) 2.00×10^8
59.	The activity of 0.500 g of $^{\frac{227}{93}}$ Np ($t_{1/2}$ = 2.20 × 10 ⁶ yrs) is millicuries. A) 3.43 B) 34.3 C) 8.72 D) 0.343
60.	$^{237}_{93}$ Np emits an α -particle to yield A) Pa B) Pu C) Th D) U
61.	Uranium-235 on fission by slow neutrons yields barium, 3 neutrons and A) krypton B) xenon C) radon D) cesium
62.	When ²³⁵ U undergoes fission by neutrons it yields cesium, 2 neutrons and A) barium B) calcium C) rubidium D) francium
63.	On bombardment with a neutron, U-235 yields bromine, 3 neutrons and A) iodine B) lanthanum C) cesium D) sodium

64.	undergoes fission with a neutron to yield Sm, 4 neutrons and A) Sn B) Zr C) Ti D) Zn
65.	The nuclear binding energy of 10 B (10.0129 amu) is J/nucleon. A) 1.040×10^{-12} B) 1.199×10^{-12} C) 1.690×10^{-12} D) 1.010×10^{-12}
66.	The binding energy of $^{14}N(14.00307 \text{ amu})$ is J/nucleon. A) 1.000×10^{-12} B) 2.010×10^{-12} C) 1.199×10^{-12} D) 3.120×10^{-12}
67.	Of the following, has the greatest binding energy per nucleon. A) ¹⁰ B (10.0129 amu) B) ¹¹ B (11.00931 amu) C) ¹⁴ N (14.00307 amu) D) ⁵⁶ Fe (55.9349 amu)
68.	An example of a nonradioactive isotope is A) ¹⁴ C B) ³ ₁ H C) ¹³¹ I D) ¹⁴ ₇ N
69.	Pu-242 undergoes α -particle emission and yields A) ^{238}U B) ^{235}U C) ^{238}Np D) ^{238}Cm

70.	$^{251}_{98}$ Cf transforms into $^{247}_{96}$ Cm by emitting A) $^{1}_{1}$ H B) $^{0}_{-1}$ e C) $^{4}_{2}$ He D) $^{1}_{0}$ n
71.	Iodine-131 undergoes β-decay to yield A) Radon B) Xenon C) Argon D) Astatine
72.	will emit to obtain a stable nucleus. A) $^{0}_{-1}e$ B) $^{1}_{1}H$ C) $^{1}_{0}n$ D) $^{4}_{2}He$
73.	Calcium in bones can be replaced by A) Sc B) Sr C) Zn D) Cs
74.	Astatine can be prepared by bombarding with α -particles. A) Br-209 B) Po-209 C) Bi-209 D) Rn-209

75.	n	
	The p ratio equals 2 for the nucleus	
	A) ³ H	
	B) ¹⁴ ₇ N	
	C) ¹² ₆ C	
	D) ² ₁ H	
76.	n	
	A nucleus not having a pratio equal to one is	
	A) ² H	
	B) 16 O	
	C) 10 B	
	D) 6 C	
77.	The age of wood can be determined by using decay. A) ¹⁴ N B) ¹⁴ C C) ¹⁸ O D) ¹² C	
78.	40 K decays into 40 Ar ($t_{1/2} = 1.2 \times 10^9$ yr) by yielding a(an) A) electron B) positron C) neutron D) proton	
79.	A sample of moon rock contains 18% 40 K and 82% 40 Ar by mass. 40 K decays to 40 Awith a half-life of 1.2×10^9 yr. The age of the rock is A) 2×10^7 yr B) 4×10^8 yr C) 3×10^9 yr D) 7×10^{10} yr	Ar

80.	β-decay of ⁹⁰ Sr yields A) Y B) Rb C) Sc D) Zr
81.	90 Zr can be obtained from the β -decay of A) N B) Hf C) Ti D) Y
82.	The intensity of radiation depends on A) the isotope half-life B) the isotope decay rate constant C) amount of the isotope D) all of the above
83.	Thyroid gland activity is studied by using A) ¹²⁷ I B) ¹³¹ I C) ²⁴ Na D) ¹⁴ C
84.	One millicurie is disintegrations/s. A) 3.7×10^{10} B) 3.7×10^{13} C) 3.7×10^{7} D) 1000
85.	The element 110 X must be a/an A) halogen B) rare gas C) transition metal D) alkali metal

86.	The element	$^{274}_{112}$ Z will resemble	
	A) Zn		

- B) Co
- C) As
- D) Ni
- 87. The element 285 X will belong to the _____ family.
 - A) halogen
 - B) nitrogen
 - C) carbon
 - D) oxygen
- 88. The energy released when one U-238 atom decays to Th-234 is _____ J. The atomic masses are: U-238, 238.0508; Th-234, 234.0436 amu; He-4, 4.0026 amu.
 - A) 4.12×10^{-11}

 - B) 6.87×10^{-13} C) 3.12×10^{-9} D) 7.12×10^{-15}