Revision of Chapter One

1. An exothermic reaction causes the surrounding to:

1. An exothermic reaction causes the surrounding to:

a) Become basic	b) Decrease in temperature
c) Increase in temperature	d) Decrease in pressure

2. How much heat is evolved when 320 g of SO_2 is burned according to the chemical equation shown below ?

a) $5.04 \times 10^{-2} \text{ kJ}$ b) $9.9 \times 10^{2} \text{ kJ}$ c) 207 kJ d) $5.0 \times 10^{2} \text{ kJ}$

3. The specific heat of aluminum is 0.214 cal/g. °C. Determine the energy, in calories , necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to 48.6 °C ?

 $q = m x s x \Delta t$

= 55.5 x 0.214 x (48.6 - 23)

= 304.04 cal

1. An exothermic reaction causes the surrounding to:

	a) Become basic		b) Decrease in temperature	
	c) Increase in temper	rature	d) Decrease in pressu	ıre
2. How much heat is evolved when 320 g of SO_2 is burned according to the chemical equation shown below ?				
	2SC	$O_2(g) + O_2(g) \longrightarrow 2S$	$\Delta H_{rxn}^{\circ} = -19$	8 kJ
	a) 5.04 x10 ⁻² kJ	b) 9.9 x10 ² kJ	c) 207 kJ	d) 5.0 x 10 ² kJ
3.	a) 5.04x10 ⁻² kJ The specific heat of necessary to raise th	b) 9.9 x10 ² kJ aluminum is 0.214 ca he temperature of a 5	c) 207 kJ l/g.°C. Determine the 5.5 g piece of aluminu	d) 5.0 x 10 ² kJ energy, in calories , m from 23.0 to 48.6°C

?

d) 1.72 J/g.°C

4. A 60.0 g sample of an alloy was heated to 96°C and then dropped into a beaker containing 87 g of water at a temperature of 24.1°C. the temperature of the water rose to a final temperature of 27.63°C. The specific heat of water is 4.184 J/g.°C. what is the specific heat of the alloy?

a) 0.313 J/g.°C b) 2.16 J/g.°C c) 0.118 J/g.°C

4. A 60.0 g sample of an alloy was heated to 96°C and then dropped into a beaker containing 87 g of water at a temperature of 24.1°C. the temperature of the water rose to a final temperature of 27.63°C. The specific heat of water is 4.184 J/g.°C. what is the specific heat of the alloy?

a) 0.313 J/g.°C	b) 2.16 J/g.°C	c) 0.118 J/g.°C	d) 1.72 J/g.°C
$q_{alloy} \neq m_{alloy} \times s_{alloy} \times \Delta t$	alloy		
q _{alloy} =- q _{water}			
$q_{water} = m_{water} \times s_{water} \times s_{water}$	∆t _{water}		
= 87 x 4.184 x (27	7.63-24.1)		
= 1284.95 J			
q _{alloy} = _ q _{water}			
= - 1284.95 J			
$q_{alloy} = m_{alloy} \times s_{alloy} \times \Delta t$	alloy		
$s_{alloy} = \frac{q_{alloy}}{q_{alloy}}$	$=\frac{-1284.95}{60 \times (27.62 - 06)}$		
$m_{alloy} \times \Delta t_{alloy}$	00 x (27.03 - 90)		
	$= 0.313 \text{ J/g.}^{\circ}\text{C}$		

An exothermic reaction causes the surrounding to: 1.

	a) Become basic		b) Decrease in temperature	
c) Increase in temperature d) Decrease in pressure				ire
2. How much heat is evolved when 320 g of SO_2 is burned according to the chemical equation shown below ?				
	2SC	$O_2(g) + O_2(g) \longrightarrow 2S$	$\Delta H_{rxn}^{\circ} = -19$	8 kJ
	a) 5.04x10 ⁻² kJ	b) 9.9 x10 ² kJ	c) 207 kJ	d) 5.0 x 10 ² kJ
3. The specific heat of aluminum is 0.214 cal/g.°C. Determine the energy, in calories , necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to 48.6°C				
	a) 109 cal	b) 273 cal	c) 304 cal	d) 577 cal

A 60.0 g sample of an alloy was heated to 96°C and then dropped into a beaker 4. containing 87 g of water at a temperature of 24.1 °C. the temperature of the water rose to a final temperature of 27.63°C. The specific heat of water is 4.184 J/g.°C. what is the specific heat of the alloy?

a) 0.313 J/g.°C b) 2.16 J/g.°C c) 0.118 J/g.°C d) 1.72 J/g.°C ?

5. When 1.535g of methanol (CH₃OH) was burned in a constant volume bomb calorimeter, the water temperature rose from 20.27°C to 26.87°C. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was 1.75 kJ/°C, calculate the molar heat of combustion of CH₃OH. The specific heat of water is 4.184 J/g.°C?

5. When 1.535g of methanol (CH₃OH) was burned in a constant volume bomb calorimeter, the water temperature rose from 20.27°C to 26.87°C. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was 1.75 kJ/°C, calculate the molar heat of combustion of CH₃OH. The specific heat of water is 4.184 J/g.°C?

d) 817 kJ/mol

6. To which one of the following reactions, occurring at 25°C, does the symbol ΔH_{f} [H₂SO₄] refer?

a) -8.17 x 10⁵ kJ/mol b) - 817 kJ/mol c) 1.88 kJ/mol

a) $H_2(g) + S(s) + 2O_2(g) \rightarrow H_2SO_4(l)$

b) $H_2SO_4(l) \rightarrow H_2(g) + S(s) + 2O_2(g)$

c) $H_2(g) + S(g) + 2O_2(g) \rightarrow H_2SO_4(l)$

d) $H_2SO_4(l) \rightarrow H_2(g) + S(g) + 2O_2(g)$

e) $2H(g) + S(g) + 4O(g) \rightarrow H_2SO_4(l)$

5. When 1.535g of methanol (CH₃OH) was burned in a constant volume bomb calorimeter, the water temperature rose from 20.27°C to 26.87°C. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was 1.75 kJ/°C, calculate the molar heat of combustion of CH₃OH. The specific heat of water is 4.184 J/g.°C?

d) 817 kJ/mol

a) -8.17 x 10⁵ kJ/mol b) - 817 kJ/mol c) 1.88 kJ/mol d)

6. To which one of the following reactions, occurring at 25°C, dose the symbol ΔH_{f} °[H₂SO₄] refer?

a) $H_2(g) + S(s) + 2O_2(g) \rightarrow H_2SO_4(l)$

b) $H_2SO_4(l) \rightarrow H_2(g) + S(s) + 2O_2(g)$

c) $H_2(g) + S(g) + 2O_2(g) \rightarrow H_2SO_4(l)$

d) $H_2SO_4(l) \rightarrow H_2(g) + S(g) + 2O_2(g)$

e) $2H(g) + S(g) + 4O(g) \rightarrow H_2SO_4(l)$

7. Given: $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H^{\circ}_{rxn} = -99 \text{ kJ}$, what is the enthalpy change for the following reaction ? $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$

a) 99 kJ b) -99 kJ c) 198 kJ d) -198 kJ

$$SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) \Delta H^{\circ}_{rxn} = -99 kJ$$

 $2SO_3(g) \rightarrow 2 SO_2(g) + O_2(g) \Delta H^{\circ}_{rxn} = +99 X2 = 198 kJ$

.

7. Given: $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H^{\circ}_{rxn} = -99 \text{ kJ}$, what is the enthalpy change for the following reaction ? $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$

a) 99 kJ	b) -99 kJ	c) 198 kJ		d) -198 kJ	
8. Find the standard er $C_{2}H_{4}(g) + 3O_{2}(g) \rightarrow 2$ $C(s) + O_{2}(g) \rightarrow CO_{2}(g)$ $H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H$	nthalpy of <mark>formation</mark> o CO ₂ (g) + 2H ₂ O(l) g) ₂ O(l)	of ethylene, <mark>C₂H₄(ε</mark> ΔH° _f = -1411 kJ ΔH° _f = -393.5 kJ ΔH° _f = -285.8 kJ	<mark>g)</mark> , giv	ven the following	data
a) 731kJ	b) 2.77 x 10 ³ kJ	c) 1.41x10 ³ kJ		d) 52 kJ	
	2C+2H	$2 \rightarrow C_2H_4(g)$			
<mark>2</mark> C(s) +	$2O_2(g) \rightarrow 2CO_2(g)$		ΔH°	_f = -393.5 <mark>X2</mark>	
<mark>2</mark> H ₂ (g)	+ $\frac{1}{2} \Theta_2(g) \rightarrow 2 H_2 O(l)$)	ΔH°_{f}	= -285.8 X2	
260 ₂ (g)	$+2H_2O(l) \rightarrow C_2H_4(g)$	g) +30 ₂ (g)	∆H° _f	=+1411	
2C(s) +	$2H_2(g) \rightarrow C_2H_2(g)$				

 $\Delta H_{f}^{\circ} = (-393.5x2) + (-285.8x2) + (1411) = 52.4 \text{ kJ}$

7. Given: $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H^{\circ}_{rxn} = -99 \text{ kJ}$, what is the enthalpy change for the following reaction ? $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$

a) 99 kJ b) -99 kJ c) 198 kJ d) -198 kJ

8. Find the standard enthalpy of formation of ethylene, $C_2H_4(g)$, given the following data:

$C_2H_4(g) + 3O_2(g) \rightarrow 2$	$CO_2(g) + 2H_2O(l)$	∆H° _f = -1411 kJ	
$C(s) + O_2(g) \to CO_2(g)$	g)	$\Delta H_{f}^{\circ} = -393.5 \text{ kJ}$	
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow F$	₂ O(l)	ΔH° _f = -285.8 kJ	
a) 731kJ	b) 2.77 x 10 ³ kJ	c) 1.41x10 ³ kJ	d) 52 kJ 🛛 📕

9. Calculate ΔH°_{rxn} for the combustion reaction of CH_4 shown below given the following : $\Delta H^{\circ}_{f} CH_4(g) = -74.8 \text{ kJ/mol}, \Delta H^{\circ}_{f} CO_2(g) = -393.5 \text{ kJ/mol}, \Delta H^{\circ}_{f} H_2O(l) = -285.5 \text{ kJ/mol}$ $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$

a) -604.2 kJ	b) 889.7 kJ	c) -997.7 kJ	d) -889.7 kJ
$\Delta H_{rxn}^0 = \Sigma$	$n\Delta H^0$ (products) - $\Sigma m\Delta f$	H ⁰ (reactants) f	
ΔH° _{rxn} =	= (ΔH° _f CO ₂ + 2x ΔH° _f H ₂	Ο)-(ΔH° _f CH ₄)	
=	-(-393,5+ 2x -285.5)-(-74.8) = -889.7 kJ	

7. Given: $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \quad \Delta H^{\circ}_{rxn} = -99 \text{ kJ}$, what is the enthalpy change for the following reaction ? $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$

a) 99 kJ (b) -99 kJ (c) 198 kJ (d) -198 kJ	
--	--

8. Find the standard enthalpy of formation of ethylene, $C_2H_4(g)$, given the following data:

$C_2H_4(g) + 3O_2(g) \rightarrow 2$	$CO_2(g) + 2H_2O(l)$	∆H° _f = -1411 kJ	
$C(s) + O_2(g) \to CO_2(g)$	g)	ΔH° _f = -393.5 kJ	
$H_2(g)$ + $\frac{1}{2} O_2(g) \rightarrow H$	l ₂ O(l)	∆H° _f = -285.8 kJ	
a) 731kJ	b) 2.77 x 10 ³ kJ	c) 1.41x10 ³ kJ	d) 52 kJ

9. Calculate ΔH°_{rxn} for the combustion reaction of CH_4 shown below given the following : $\Delta H^{\circ}_{f} CH_4(g) = -74.8 \text{ kJ/mol}, \Delta H^{\circ}_{f} CO_2(g) = -393.5 \text{ kJ/mol}, \Delta H^{\circ}_{f} H_2O(l) = -285.5 \text{ kJ/mol}$ $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$

(a) -604.2 kJ (b) 889.7 kJ (c) -997.7 kJ (d) -889.7 kJ

10. A 1.3 g sample of benzoic acid $(C_7H_6O_2)$ was burned in a bomb calorimeter. The heat capacity of the entire apparatus, including the bomb, pail, thermometer, and water, was found to be 11145 J/K. As a result of the reaction, the temperature of the calorimeter and water increased by 4.627K. What is the molar heat of combustion of benzoic acid?

a) 4.84 x 10⁶ kJ/mol b) -2.96 kJ/mol

c) -4844 kJ

d) 549.1 kJ

10. A 1.3 g sample of benzoic acid $(C_7H_6O_2)$ was burned in a bomb calorimeter. The heat capacity of the entire apparatus, including the bomb, pail, thermometer, and water, was found to be 11145 J/K. As a result of the reaction, the temperature of the calorimeter and water increased by 4.627K. What is the molar heat of combustion of benzoic acid?

a) 4.84 x 10⁶ kJ/mol | b) -2.96 kJ/mol

6 kJ/mol c) -4844 kJ 💼

d) 549.1 kJ