Revision of
 Chapter One

Chapter one

1. An exothermic reaction causes the surrounding to:

a) Become basic
 b) Decrease in temperature

c) Increase in temperature

d) Decrease in pressure
2. How much heat is evolved when 320 g of SO_{2} is burned according to the chemical equation shown below?

$2 \mathrm{SO}_{2}(\mathrm{~g})-\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$			$\Delta H_{r x n}^{\circ}=-198 \mathrm{~kJ}$
a) $5.04 \times 10^{-2} \mathrm{~kJ}$	b) $9.9 \times 10^{2} \mathrm{~kJ}$	c) 207 kJ	d) $5.0 \times 10^{2} \mathrm{~kJ}$

First convert SO_{2} from g to mole
mole of $\mathrm{SO}_{2}=\frac{\text { mass }}{\text { molar mass }}=\frac{320}{64 \circ}=5 \mathrm{~mol}$ Second compare
From equation :
2 mole of $\mathrm{SO}_{2} \rightarrow-198 \mathrm{~kJ}$
5 mole of $\mathrm{SO}_{2} \xrightarrow{\lambda}$? kJ

heat $=\frac{5 x-198}{2}=-495 \mathrm{~kJ}$
$=-4.95 \mathrm{~kJ} \times 10^{2} \mathrm{~kJ}$
$\approx 5.00 \times 10^{2} \mathrm{~kJ}$

Chapter one

1. An exothermic reaction causes the surrounding to:

a) Become basic	b) Decrease in temperature

2. How much heat is evolved when 320 g of SO_{2} is burned according to the chemical equation shown below?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{r x n}^{\circ}=-198 \mathrm{~kJ}
$$

a) $5.04 \times 10^{-2} \mathrm{~kJ}$	b) $9.9 \times 10^{2} \mathrm{~kJ}$	c) 207 kJ	d) $5.0 \times 10^{2} \mathrm{~kJ}$

3. The specific heat of aluminum is $0.214 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. Determine the energy, in calories, necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to $48.6^{\circ} \mathrm{C}$?
a) 109 cal
b) 273 cal
c) 304 cal
d) 577 cal
$q=m \times s \times \Delta t$
$=55.5 \times 0.214 \times(48.6-23)$
$=304.04$ cal

Chapter one

1. An exothermic reaction causes the surrounding to:

a) Become basic
 b) Decrease in temperature

c) Increase in temperature

d) Decrease in pressure
2. How much heat is evolved when 320 g of SO_{2} is burned according to the chemical equation shown below ?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{r x n}^{\circ}=-198 \mathrm{~kJ}
$$

a) $5.04 \times 10^{-2} \mathrm{~kJ}$
b) $9.9 \times 10^{2} \mathrm{~kJ}$
c) 207 kJ
d) $5.0 \times 10^{2} \mathrm{~kJ}$
3. The specific heat of aluminum is $0.214 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. Determine the energy, in calories , necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to $48.6^{\circ} \mathrm{C}$?
a) 109 cal
b) 273 cal
c) 304 cal
d) 577 cal
4. A 60.0 g sample of an alloy was heated to $96^{\circ} \mathrm{C}$ and then dropped into a beaker containing 87 g of water at a temperature of $24.1^{\circ} \mathrm{C}$. the temperature of the water rose to a final temperature of $27.63^{\circ} \mathrm{C}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. what is the specific heat of the alloy?
a) $0.313 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
b) $2.16 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
c) $0.118 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
d) $1.72 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

Chapter one

4. A 60.0 g sample of an alloy was heated to $96^{\circ} \mathrm{C}$ and then dropped into a beaker containing 87 g of water at a temperature of $24.1^{\circ} \mathrm{C}$. the temperature of the water rose to a final temperature of $27.63^{\circ} \mathrm{C}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. what is the specific heat of the alloy?
a) $0.313 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
b) $2.16 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
c) $0.118 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
d) $1.72 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \begin{array}{l}
q_{\text {alloy }}=m_{\text {alloy }} \text {, } \text { salloy } \begin{array}{l}
\text { alloy }
\end{array}=-q_{\text {water }} \Delta t_{\text {alloy }} .
\end{array} \\
& \mathrm{q}_{\text {water }}=\mathrm{m}_{\text {water }} \times \mathrm{s}_{\text {water }} \times \Delta \mathrm{t}_{\text {water }} \\
& =87 \times 4.184 \times(27.63-24.1) \\
& =1284.95 \mathrm{~J} \\
& q_{\text {alloy }}=-q_{\text {water }} \\
& =-1284.95 \mathrm{~J} \\
& \mathrm{q}_{\text {alloy }}=\mathrm{m}_{\text {alloy }} \times \mathrm{s}_{\text {alloy }} \times \Delta \mathrm{t}_{\text {alloy }} \\
& s_{\text {alloy }}=\frac{q_{\text {alloy }}}{m_{\text {alloy }} \times \Delta t_{\text {alloy }}}=\frac{-1284.95}{60 \times(27.63-96)} \\
& =0.313 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Chapter one

1. An exothermic reaction causes the surrounding to:

a) Become basic
 b) Decrease in temperature

c) Increase in temperature

d) Decrease in pressure
2. How much heat is evolved when 320 g of SO_{2} is burned according to the chemical equation shown below ?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{r x n}^{\circ}=-198 \mathrm{~kJ}
$$

a) $5.04 \times 10^{-2} \mathrm{~kJ}$
b) $9.9 \times 10^{2} \mathrm{~kJ}$
c) 207 kJ
d) $5.0 \times 10^{2} \mathrm{~kJ}$
3. The specific heat of aluminum is $0.214 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. Determine the energy, in calories , necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to $48.6^{\circ} \mathrm{C}$?
a) 109 cal
b) 273 cal
c) 304 cal
d) 577 cal
4. A 60.0 g sample of an alloy was heated to $96^{\circ} \mathrm{C}$ and then dropped into a beaker containing 87 g of water at a temperature of $24.1^{\circ} \mathrm{C}$. the temperature of the water rose to a final temperature of $27.63^{\circ} \mathrm{C}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. what is the specific heat of the alloy?
a) $0.313 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
1.
b) $2.16 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
c) $0.118 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
d) $1.72 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

Chapter one

5. When 1.535 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was burned in a constant volume bomb calorimeter, the water temperature rose from $20.27^{\circ} \mathrm{C}$ to $26.87^{\circ} \mathrm{C}$. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was $1.75 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the molarheat of combustion of $\mathrm{CH}_{3} \mathrm{OH}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$?

| a) $-8.17 \times 10^{5} \mathrm{~kJ} / \mathrm{mol}$ | b) $-817 \mathrm{~kJ} / \mathrm{mol}$ | c) $1.88 \mathrm{~kJ} / \mathrm{mol}$ | d) $817 \mathrm{~kJ} / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- | :--- | $q_{r x n}=-\left(q_{\text {water }}+q_{\text {bomb }}\right)$

$$
\begin{array}{rl|rl}
\mathrm{q}_{\text {water }} & =\mathrm{m} \times s \times \Delta \mathrm{t} & \mathrm{q}_{\mathrm{bomb}} & =\mathrm{C} \times \Delta \mathrm{t} \\
& =4.184 \times 1000 \times(26.87-20.27) & & =1.75 \times(26.87-20.27) \\
& =27614.4 \mathrm{~J} & =11.55(\mathrm{~kJ})
\end{array}
$$

$$
=27.61 \mathrm{~kJ} \circ \circ
$$

$$
\begin{aligned}
\mathrm{q}_{\mathrm{rxn}} & =-\left(\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {bomb }}\right) \\
& =-(27.61+11.55)=-39.16 \mathrm{~kJ}
\end{aligned}
$$

mole of $\mathrm{CH}_{3} \mathrm{OH}=\frac{\text { mass }}{\text { molar mass }}=\frac{1.535}{32{ }^{*}}=8.048 \mathrm{~mol}$

$$
\begin{aligned}
& 0.048 \text { mole of } \mathrm{CH}_{3} \mathrm{OH} \rightarrow{ }^{-39.16 \mathrm{~kJ}} \\
& 1 \mathrm{~mole} \text { of } \mathrm{CH}_{3} \mathrm{OH} \rightarrow \rightarrow \xrightarrow{-3 .} \mathrm{kJ} \\
& 1 \times-39.16=? \mathrm{~kJ} \times 0.048
\end{aligned} \quad \text { heat }=\frac{1 x-39.16}{0.048}=-816 \mathrm{~kJ}
$$

Chapter one

5. When 1.535 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was burned in a constant volume bomb calorimeter, the water temperature rose from $20.27^{\circ} \mathrm{C}$ to $26.87^{\circ} \mathrm{C}$. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was $1.75 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the molar heat of combustion of $\mathrm{CH}_{3} \mathrm{OH}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$?
a) $-8.17 \times 10^{5} \mathrm{~kJ} / \mathrm{mol}$
b) $-817 \mathrm{~kJ} / \mathrm{mol}$
c) $1.88 \mathrm{~kJ} / \mathrm{mol}$
d) $817 \mathrm{~kJ} / \mathrm{mol}$
6. To which one of the following reactions, occurring at $25^{\circ} \mathrm{C}$, does the symbol $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{H}_{2} \mathrm{SO}_{4}$] refer?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) X$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \quad \mathrm{X}$
d) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) X$
e) $2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{g})+4 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \quad \mathrm{X}$

Chapter one

5. When 1.535 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was burned in a constant volume bomb calorimeter, the water temperature rose from $20.27^{\circ} \mathrm{C}$ to $26.87^{\circ} \mathrm{C}$. if the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was $1.75 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the molar heat of combustion of $\mathrm{CH}_{3} \mathrm{OH}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$?
a) $-8.17 \times 10^{5} \mathrm{~kJ} / \mathrm{mol}$ b) $-817 \mathrm{~kJ} / \mathrm{mol}$ c) $1.88 \mathrm{~kJ} / \mathrm{mol} \quad$ d) $817 \mathrm{~kJ} / \mathrm{mol}$
6. To which one of the following reactions, occurring at $25^{\circ} \mathrm{C}$, dose the symbol $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ refer?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$

1
b) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
d) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g})$
e) $2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{g})+4 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$

Chapter one

7. Given: $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}{ }_{r \times n}=-99 \mathrm{~kJ}$, what is the enthalpy change for the following reaction ? $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) 99 kJ
b) -99 kJ
c) 198 kJ
d) -198 kJ

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-99 \mathrm{~kJ} \\
& 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=+99 \times 2=198 \mathrm{~kJ}
\end{aligned}
$$

Chapter one

7. Given: $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-99 \mathrm{~kJ}$, what is the enthalpy change for the following reaction ? $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) 99 kJ
b) -99 kJ
c) 198 kJ _T
d) -198 kJ
8. Find the standard enthalpy of formation of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, given the following data:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
\Delta H^{\circ}{ }_{f} & =-1411 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{f}} & =-393.5 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{f}} & =-285.8 \mathrm{~kJ}
\end{aligned}
$$

a) 731 kJ
b) $2.77 \times 10^{3} \mathrm{~kJ}$
c) $1.41 \times 10^{3} \mathrm{~kJ}$
d) 52 kJ

$2 \mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$

$$
\begin{array}{ll}
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-393.5 \mathrm{X} 2 \\
2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-285.8 \mathrm{X} 2 \\
2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=+1411
\end{array}
$$

Chapter one

7. Given: $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-99 \mathrm{~kJ}$, what is the enthalpy change for the following reaction ? $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) 99 kJ
b) -99 kJ
c) 198 kJ
d) -198 kJ
8. Find the standard enthalpy of formation of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, given the following data:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{\circ}{ }_{f}=-1411 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H_{f}^{\circ}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{\circ}{ }_{f}=-285.8 \mathrm{~kJ}$
a) 731 kJ
b) $2.77 \times 10^{3} \mathrm{~kJ}$
c) $1.41 \times 10^{3} \mathrm{~kJ}$
d) 52 kJ
9. Calculate $\Delta \mathrm{H}^{\circ}{ }_{r x n}$ for the combustion reaction of CH_{4} shown below given the following : $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{CH}_{4}(\mathrm{~g})=-74.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.5 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) -604.2 kJ
b) 889.7 kJ
c) -997.7 kJ
d) -889.7 kJ

$$
\begin{aligned}
\Delta H^{0}{ }_{r \times n} & =\sum n \Delta H^{0}{ }_{f} \text { (products) }-\sum m \Delta H_{f}^{0} \text { (reactants) } \\
\Delta H^{\circ}{ }_{r \times n} & =\left(\Delta H^{\circ}{ }_{f} \mathrm{CO}_{2}+2 \times \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}\right)-\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{CH}_{4}\right) \\
& =(-393,5+2 x-285.5)-(-74.8)=-889.7 \mathrm{~kJ}
\end{aligned}
$$

Chapter one

7. Given: $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-99 \mathrm{~kJ}$, what is the enthalpy change for the following reaction ? $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) 99 kJ
b) -99 kJ
c) 198 kJ
d) -198 kJ
8. Find the standard enthalpy of formation of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, given the following data:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H_{f}^{\circ}=-1411 \mathrm{~kJ}$
$\Delta H^{\circ}{ }_{f}=-393.5 \mathrm{~kJ}$
a) 731 kJ
b) $2.77 \times 10^{3} \mathrm{~kJ}$
$\Delta H^{\circ}{ }_{f}=-285.8 \mathrm{~kJ}$
c) $1.41 \times 10^{3} \mathrm{~kJ}$
d) 52 kJ
9. Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the combustion reaction of CH_{4} shown below given the following : $\Delta \mathrm{H}^{\circ} \mathrm{CH}_{4}(\mathrm{~g})=-74.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.5 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) -604.2 kJ
b) 889.7 kJ
c) -997.7 kJ
d) -889.7 kJ ?

Chapter one

10. A 1.3 g sample of benzoic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ was burned in a bomb calorimeter. The heat capacity of the entire apparatus, including the bomb, pail, thermometer, and water, was found to be $11145 \mathrm{~J} / \mathrm{K}$. As a result of the reaction, the temperature of the calorimeter and water increased by 4.627 K . What is the molar heat of combustion of benzoic acid?
a) $4.84 \times 10^{6} \mathrm{~kJ} / \mathrm{mol}$
b) $-2.96 \mathrm{~kJ} / \mathrm{mol}$
c) -4844 kJ
d) 549.1 kJ
$\mathrm{q}_{\mathrm{rxn}}=-\left(\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {bomb }}\right)$
$q_{\text {rxn }}=-q_{\text {calorimeter }}$
$\mathrm{q}_{\text {calorimeter }}=\mathrm{Cx} \Delta \mathrm{t}$
$=11145 \times 4.627$
$=51567.9 \mathrm{~J}$ 。○
 $=51.6 \mathrm{~kJ}$

$$
q_{\mathrm{rxn}}=-51.6 \mathrm{~kJ}
$$

mole of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}=\frac{\text { mass }}{\text { molar mass }}=\frac{1.3}{122}=0.0107 \mathrm{~mol}\left\{\begin{array}{c}\text { Motar mass of } \\ \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}=7 \times 12+ \\ 6 \times 1+2 \times 16=122\end{array}\right.$ 0.0107 mole of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} \rightarrow-51.6 \mathrm{~kJ}$ 1 mole of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} \rightarrow \rightarrow \rightarrow$? kJ
$1 \times-51.6=$?kJ x 0.0107

$$
\text { heat } \begin{aligned}
\frac{1 x-51.7}{0.0107} & =-4822 \mathrm{~kJ} \\
& \approx-4844 \mathrm{~kJ}
\end{aligned}
$$

Chapter one

10. A 1.3 g sample of benzoic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ was burned in a bomb calorimeter. The heat capacity of the entire apparatus, including the bomb, pail, thermometer, and water, was found to be $11145 \mathrm{~J} / \mathrm{K}$. As a result of the reaction, the temperature of the calorimeter and water increased by 4.627 K . What is the molar heat of combustion of benzoic acid?
a) $4.84 \times 10^{6} \mathrm{~kJ} / \mathrm{mol}$
b) $-2.96 \mathrm{~kJ} / \mathrm{mol}$
c) $-4844 \mathrm{~kJ} \mathrm{~L}^{\mathbf{4}}$
d) 549.1 kJ
