Revision of Chapter Two

1. Which of the following species has the highest entropy (S $^{\circ}$) at 25 $^{\circ}$ C?

1. Which of the following species has the highest entropy (S $^{\circ}$) at 25 $^{\circ}$ C?

a) $CH_3OH(l)$ b) CO(g) c) $MgCO_3(s)$ d) $H_2O(l)$ e) Ni(s)

2. Arrange the following compounds in order of increasing standard molar entropy at 25°C: $C_3H_8(g)$, $C_2H_4(g)$, ZnS(s), and $H_2O(l)$

a) $ZnS(s) < H_2O(l) < C_3H_8(g) < C_2H_4(g)$

b) $C_2H_4(g) < H_2O(l) < C_3H_8(g) < ZnS(s)$

c) $ZnS(s) < C_3H_8(g) < C_2H_4(g) < H_2O(l)$

d) $C_{3}H_{8}(g) < C_{2}H_{4}(g) < H_{2}O(l) < ZnS(s)$

e) $ZnS(s) < H_2O(l) < C_2H_4(g) < C_3H_8(g)$

1. Which of the following species has the highest entropy (S $^{\circ}$) at 25 $^{\circ}$ C?

a) $CH_3OH(l)$ b) CO(g) c) $MgCO_3(s)$ d) $H_2O(l)$ e) Ni(s)

2. Arrange the following compounds in order of increasing standard molar entropy at 25° C: $C_{3}H_{8}(g)$, $C_{2}H_{4}(g)$, ZnS(s), and $H_{2}O(l)$

a) $ZnS(s) < H_2O(l) < C_3H_8(g) < C_2H_4(g)$

b) $C_2H_4(g) < H_2O(l) < C_3H_8(g) < ZnS(s)$

- c) $ZnS(s) < C_3H_8(g) < C_2H_4(g) < H_2O(l)$
- d) $C_{3}H_{8}(g) < C_{2}H_{4}(g) < H_{2}O(l) < ZnS(s)$

e) $ZnS(s) < H_2O(l) < C_2H_4(g) < C_3H_8(g)$

3. Determine ΔS° for the reaction $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$ if you know : $S^{\circ}(SO_3)=256.2 \text{ J/K.mol}, S^{\circ}(H_2O)=69.9 \text{ J/K.mol}, S^{\circ}(H_2SO_4)=156.9 \text{ J/K.mol},$

a)169.2 J/K.mol b)1343.2J/K.mol c)-169.2J/K.mol d)-29.4 J/K.mol e) 29.4 J/K.mol

3. Determine ΔS° for the reaction $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$ if you know : $S^{\circ}(SO_3)=256.2 \text{ J/K.mol}, S^{\circ}(H_2O)=69.9 \text{ J/K.mol}, S^{\circ}(H_2SO_4)=156.9 \text{ J/K.mol},$

a)169.2 J/K.mol b)1343.2J/K.mol c)-169.2J/K.mol d)-29.4 J/K.mol e) 29.4 J/K.mol

 $\Delta S_{rxn}^{\circ} = \Sigma n S^{0} \text{ (products)} - \Sigma m H^{0} \text{ (reactants)}$ $\Delta S_{rxn}^{\circ} = (S^{\circ}(H_{2}SO_{4})) - (S^{\circ}(SO_{3}) + S^{\circ}(H_{2}O))$ $\Delta S_{rxn}^{\circ} = (156.9) - (256.2 + 69.9)$ = -169.2 J/K.mol

1. Which of the following species has the highest entropy (S $^{\circ}$) at 25 $^{\circ}$ C?

a) $CH_3OH(l)$ b) CO(g) c) $MgCO_3(s)$ d) $H_2O(l)$ e) Ni(s)

2. Arrange the following compounds in order of increasing standard molar entropy at 25° C: $C_{3}H_{8}(g)$, $C_{2}H_{4}(g)$, ZnS(s), and $H_{2}O(l)$

a) $ZnS(s) < H_2O(l) < C_3H_8(g) < C_2H_4(g)$

b) $C_2H_4(g) < H_2O(l) < C_3H_8(g) < ZnS(s)$

- c) $ZnS(s) < C_3H_8(g) < C_2H_4(g) < H_2O(l)$
- d) $C_{3}H_{8}(g) < C_{2}H_{4}(g) < H_{2}O(l) < ZnS(s)$

e) $ZnS(s) < H_2O(l) < C_2H_4(g) < C_3H_8(g)$

3. Determine ΔS° for the reaction $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$ if you know : $S^{\circ}(SO_3)=256.2 \text{ J/K.mol}, S^{\circ}(H_2O)=69.9 \text{ J/K.mol}, S^{\circ}(H_2SO_4)=156.9 \text{ J/K.mol},$

a)169.2 J/K.mol b)1343.2J/K.mol c)-169.2J/K.mol d)-29.4 J/K.mol e) 29.4 J/K.mol

4. A negative sign for ΔG indicate that, at constant T and P ,

a) The reaction is exothermic	b) The reaction is endothermic
c) The reaction is fast	d) The reaction is spontaneous

5. Ozone (O₃) in the atmosphere can react with nitric oxide (NO): $O_3(g)+NO(g) \rightarrow NO_2(g)+O_2(g)$, Calculate the ΔG° for this reaction at 25°C. ($\Delta H^\circ = -199$ kJ/mol, $\Delta S^\circ = -4.1$ J/K.mol)

a)1020 kJ/mol b)-1.22x10³ kJ/mol c)-1.42x10³ kJ/mol d)2x10³ kJ/mol e) -198 J/K.mol

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

= -199 - ((25+273)x (-4.1))

1000

= -198 kJ/mol

4. A negative sign for ΔG indicate that, at constant T and P ,

a) The reaction is exothermic	b) The reaction is endothermic
c) The reaction is fast	d) The reaction is spontaneous

5. Ozone (O₃) in the atmosphere can react with nitric oxide (NO): $O_3(g)+NO(g) \rightarrow NO_2(g)+O_2(g)$, Calculate the ΔG° for this reaction at 25°C. ($\Delta H^\circ = -199$ kJ/mol, $\Delta S^\circ = -4.1$ J/K.mol)

a)1020 kJ/mol b)-1.22x10³ kJ/mol c)-1.42x10³ kJ/mol d)2x10³ kJ/mol e) -198 J/K.mol

6. Sodium carbonate can be made by heating sodium bicarbonate: 2NaHCO₃(s)→Na₂CO₃(s)+CO₂(g)+H₂O(g), Given that ΔH°= 128.9 kJ/mol and ΔG°=33.1 kJ/mol at 25°C, above what minimum temperature will the reaction become spontanoius under standard state conditions?

 Sodium carbonate can be made by heating sodium bicarbonate: 2NaHCO₃(s)→Na₂CO₃(s)+CO₂(g)+H₂O(g), Given that ΔH°= 128.9 kJ/mol and ΔG°=33.1 kJ/mol at 25°C, above what minimum temperature will the reaction become spontanoius under standard state conditions?

a) 0.4 K	b) 3.9 K	c) 321 K	d) 401 K	e) 525K
		ΔH= <mark>1]</mark> ΔS		
		$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S$	S°	
		$T\Delta S^{\circ} = \Delta H^{\circ} - \Delta G^{\circ}$	0	
		$\Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}$		
		$=\frac{128.9-33.1}{25+273}$	= 0.321 kJ/K.mol	
		$\Delta H = T\Delta S$ $T = \frac{\Delta H}{\Delta S} = \frac{128.9}{0.321}$		
		= 401 K		

4. A negative sign for ΔG indicate that, at constant T and P ,

a) The reaction is exothermic	b) The reaction is endothermic
c) The reaction is fast	d) The reaction is spontaneous

5. Ozone (O₃) in the atmosphere can react with nitric oxide (NO): $O_3(g)+NO(g) \rightarrow NO_2(g)+O_2(g)$, Calculate the ΔG° for this reaction at 25°C. ($\Delta H^\circ = -199$ kJ/mol, $\Delta S^\circ = -4.1$ J/K.mol)

a)1020 kJ/mol b)-1.22x10³ kJ/mol c)-1.42x10³ kJ/mol d)2x10³ kJ/mol e) -198 J/K.mol

6. Sodium carbonate can be made by heating sodium bicarbonate: 2NaHCO₃(s)→Na₂CO₃(s)+CO₂(g)+H₂O(g), Given that ΔH°= 128.9 kJ/mol and ΔG°=33.1 kJ/mol at 25°C, above what minimum temperature will the reaction become spontanoius under standard state conditions?

a) 0.4 K b) 3.9 K c) 321 K d) 401 K e) 52	25K
---	-----

7. For the reaction $H_2(g)+S(s) \rightarrow H_2S(g)$, $\Delta H^\circ = -20.2$ kJ/mol and $\Delta S^\circ = +43.1$ J/K.mol. Which of the following statement is true?

a) The reaction is only spontaneous at low temperatures.

- b) The reaction is spontaneous at all temperatures.
- c) ΔG° become less favorable as temperature increases.
- d) The reaction is spontaneous only at high temperatures
- e) The reaction is at equilibrium at 25°C under standard conditions.

TABLE 18.3Factors Affecting the Sign of ΔG in the Relationship $\Delta G = \Delta H - T\Delta S$		$\Delta H - T \Delta S$	
ΔН	ΔS	ΔG	Example
+	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2 \text{HgO}(s) \longrightarrow 2 \text{Hg}(l) + \text{O}_2(g)$
+	-	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3O_2(g) \longrightarrow 2O_3(g)$
)—	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2\mathrm{H}_2\mathrm{O}_2(aq) \longrightarrow 2\mathrm{H}_2\mathrm{O}(l) + \mathrm{O}_2(g)$
-	-	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$

7. For the reaction $H_2(g)+S(s) \rightarrow H_2S(g)$, $\Delta H^\circ = -20.2 \text{ kJ/mol}$ and $\Delta S^\circ = +43.1 \text{ J/K.mol}$. Which of the following statement is true?

a) The reaction is only spontaneous at low temperatures.

b) The reaction is spontaneous at all temperatures.

c) ΔG° become less favorable as temperature increases.

d) The reaction is spontaneous only at high temperatures

- e) The reaction is at equilibrium at 25°C under standard conditions.
- 8. Determine the equilibrium constant Kp at 25°C for the reaction $N_2(g)+3H_2(g)\leftrightarrow 2NH_3(g)$ ($\Delta G_f^{\circ}(NH_3(g))=-16.6 \text{ kJ/mol}$)

a) 1.52x10 ⁻⁶	b) 6.60x10 ⁵	c) 8.28x10 ⁻²	d) 2.60	e) 13.4		
			∆G°= - RT lnKp			
ΔG°≠ - RT ln <mark>Kp</mark>			$\ln K_m = \frac{\Delta G^\circ}{1}$		$K_p = e^{13.4} =$	$6.6x10^{5}$
$\Delta G^{0}_{rxn} = \Sigma n \Delta G^{0}_{f} (p)$	oroducts) - Σ <i>m</i> ∆G⁰ (f	reactants)	-RT -33	3.2		
$\Delta G^{\circ}_{rxn} = (2x\Delta G^{\circ})$	$P_f NH_3$) - (($\Delta G_f^* N_2$)+($3x\Delta G_{f}^{\circ}H_{2}$))	$=\frac{1}{-8.314}$	$\frac{1}{4x298} = 13.4$		
=(2x -16	$(.6) - (0 + (3 \times 0)) = -3$	3.2 kJ/mol	10	00		

7. For the reaction $H_2(g)+S(s) \rightarrow H_2S(g)$, $\Delta H^\circ = -20.2 \text{ kJ/mol}$ and $\Delta S^\circ = +43.1 \text{ J/K.mol}$. Which of the following statement is true?

a) The reaction is only spontaneous at low temperatures.

b) The reaction is spontaneous at all temperatures.

c) ΔG° become less favorable as temperature increases.

d) The reaction is spontaneous only at high temperatures

e) The reaction is at equilibrium at 25°C under standard conditions.

8. Determine the equilibrium constant Kp at 25°C for the reaction $N_2(g)+3H_2(g)\leftrightarrow 2NH_3(g)$ ($\Delta G_f^{\circ}(NH_3(g))=-16.6 \text{ kJ/mol}$)

a) 1.52x10⁻⁶ b) 6.60x10⁵ c) 8.28x10⁻² d) 2.60 e) 13.4

9. For the reaction 2C (graphite)+ $H_2(g) \rightarrow C_2H_2(g)$, $\Delta G^\circ = 209.2$ kJ/mol at 25°C. if $P(H_2)=100$ atm and $P(C_2H_2)=0.10$ atm, calculate ΔG for this reaction?

 $\Delta G = 209.2 - 17.11$

= 192.1 kJ/mol

a) 207.8kJ/mol b) 226.3 kJ/mol c) 192.1 kJ/mol d) 17.3 kJ/mol e)-16.9 kJ/mol $\Delta G = \Delta G^{\circ} + RT \ln Q$ $Q = \frac{P_{C_2 H_2}}{P_{H_2}}$ $\Delta G = 209.2 + \frac{8.314x298 \ln \frac{0.1}{100}}{1000}$

9. For the reaction 2C (graphite)+ $H_2(g) \rightarrow C_2H_2(g)$, $\Delta G^\circ = 209.2$ kJ/mol at 25°C. if $P(H_2)=100$ atm and $P(C_2H_2)=0.10$ atm, calculate ΔG for this reaction?

a) 207.8kJ/mol	b) 226.3 kJ/mol	c) 192.1 kJ/mol	d) 17.3 kJ/mol	e)-16.9 kJ/mol
		I		
				/