Revision of Chapter Three

Chapter Three

1. Which of the following compounds should be soluble in CCl_{4} ?

a) NaCl	b) $\mathrm{H}_{2} \mathrm{O}$	c) NaOH	d) $\mathrm{C}_{8} \mathrm{H}_{18}$	e) None of these
ionic	polar	ionic	Nonpolar	

Chapter Three

1. Which of the following compounds should be soluble in CCl_{4} ?
a) NaCl
b) $\mathrm{H}_{2} \mathrm{O}$
c) NaOH

e) None of these
2. Which of the following gives the molarity of a 17% by mass solution of sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}$ (molar mass $=82 \mathrm{~g} / \mathrm{mol}$) in water? The density of the solution is $1.09 \mathrm{~g} / \mathrm{ml}$.
a) $2.26 \times 10^{-6} \mathrm{M}$
b) 0.207 M
c) 2.07 M
d) 2.26 M
e) 2.72 M

$$
\begin{aligned}
M & =\frac{\% \times d \times 10}{M M} \\
& =\frac{17 \times 1.09 \times 10}{82} \\
& =2.26 \mathrm{M}
\end{aligned}
$$

Chapter Three

1. Which of the following compounds should be soluble in CCl_{4} ?
a) NaCl
b) $\mathrm{H}_{2} \mathrm{O}$
c) NaOH
d) $\mathrm{C}_{8} \mathrm{H}_{18} \quad{ }^{1}$
e) None of these
2. Which of the following gives the molarity of a 17% by mass solution of sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}$ (molar mass $=82 \mathrm{~g} / \mathrm{mol}$) in water? The density of the solution is $1.09 \mathrm{~g} / \mathrm{ml}$.
a) $2.26 \times 10^{-6} \mathrm{M}$
b) 0.207 M
c) 2.07 M
d) 2.26 M
e) 2.72 M
3. What is the percent CdSO_{4} by mass in a 1.0 molal aqueous CdSO_{4} solution?
a) 0.001%
b) 0.10%
c) 17.2%
d) 20.8%
e) 24.4%

$$
\begin{aligned}
\%= & \frac{m \times M M \times 100}{(m \times M M)+1000} \\
& =\frac{1 \times 208^{\circ} \times 100}{(1 \times 208)+1000} \\
& =17.2 \%
\end{aligned}
$$

Chapter Three

1. Which of the following compounds should be soluble in CCl_{4} ?

a) NaCl	b) $\mathrm{H}_{2} \mathrm{O}$	c) NaOH	d) $\mathrm{C}_{8} \mathrm{H}_{18} \quad$ e) None of these

2. Which of the following gives the molarity of a 17% by mass solution of sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}$ (molar mass $=82 \mathrm{~g} / \mathrm{mol}$) in water? The density of the solution is $1.09 \mathrm{~g} / \mathrm{ml}$.
a) $2.26 \times 10^{-6} \mathrm{M}$
b) 0.207 M
c) 2.07 M
d) 2.26 M
e) 2.72 M
3. What is the percent CdSO_{4} by mass in a 1.0 molal aqueous CdSO_{4} solution?
a) 0.001%
b) 0.10% \square d) 20.8%
e) 24.4%
4. Calculate the percent by mass of potassium nitrate in a solution made from 45 g of KNO_{3} and 295 ml of water. The density of water is $0.997 \mathrm{~g} / \mathrm{ml}$?
a) 1.51%
b) 7.57%
c) 13.3%
d) 15.2%
e) None of these

Chapter Three

4. Calculate the percent by mass of potassium nitrate in a solution made from 45 g of KNO_{3} and 295 ml of water. The density of water is $0.997 \mathrm{~g} / \mathrm{ml}$?
a) 1.51%
b) 7.57%
C) 13.3%
d) 15.2%
e) None of these
$\%\left(\mathrm{KNO}_{3}\right)=\frac{\text { mass of } \mathrm{KNO}_{3}}{\text { mass of solution }\left(\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}\right)} \times 100$
$\mathrm{KNO}_{3}=45 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{O}=295 \mathrm{ml}$
Mass of $\mathrm{H}_{2} \mathrm{O}=\mathrm{d} \times V$
$=0.997 \times 295$

$=294.115 \mathrm{~g}$
$\%\left(\mathrm{KNO}_{3}\right)=\frac{45}{(45+294.115)} \times 100$
$=13.3 \%$

Chapter Three

1. Which of the following compounds should be soluble in CCl_{4} ?
a) NaCl
b) $\mathrm{H}_{2} \mathrm{O}$
c) NaOH
d) $\mathrm{C}_{8} \mathrm{H}_{18}$
e) None of these
2. Which of the following gives the molarity of a 17% by mass solution of sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}$ (molar mass $=82 \mathrm{~g} / \mathrm{mol}$) in water? The density of the solution is $1.09 \mathrm{~g} / \mathrm{ml}$.
a) $2.26 \times 10^{-6} \mathrm{M}$
b) 0.207 M
c) 2.07 M
d) 2.26 M
e) 2.72 M
3. What is the percent CdSO_{4} by mass in a 1.0 molal aqueous CdSO_{4} solution?
a) 0.001%
b) 0.10%
c) $17.2 \% n^{1}$
d) 20.8%
e) 24.4%
4. Calculate the percent by mass of potassium nitrate in a solution made from 45 g of KNO_{3} and 295 ml of water. The density of water is $0.997 \mathrm{~g} / \mathrm{ml}$?
a) 1.51%
b) 7.57%
c) $13.3 \% \quad \mathrm{I}^{2}$
d) 15.2%
e) None of these

Chapter Three

5. Calculate the molality of a solution containing 14.3 g of NaCl in 42.2 g of water ?
a) $2.45 \times 10^{-4} \mathrm{~m}$
b) $5.80 \times 10^{-4} \mathrm{~m}$
c) $2.45 \times 10^{-1} \mathrm{~m}$
d) 103 m
e) 5.80 m
$\mathrm{m}=\frac{\text { mole of solut }}{\text { mass of solvent }(\mathrm{kg})}$
Solute $(\mathrm{NaCl})=14.3 \mathrm{~g}$
mole of $\mathrm{NaCl}=\frac{\text { mass }}{\text { molar mass }}=\frac{14.3}{58.5}=0.24 \mathrm{~mol}$

solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=42.2 \mathrm{~g}=42.2 \times 10^{-3} \mathrm{~kg}$

$\mathrm{m}=\frac{0.24}{42.2 \times 10^{-3}}$
$=5.8 \mathrm{~m}$

Chapter Three

5. Calculate the molality of a solution containing 14.3 g of NaCl in 42.2 g of water ?

a) $2.45 \times 10^{-4} \mathrm{~m}$	b) $5.80 \times 10^{-4} \mathrm{~m}$	c) $2.45 \times 10^{-1} \mathrm{~m}$	d) 103 m	e) 5.80 m L

6. The solubility of gases in water usually decreases with

7. The solubility of nitrogen gas at $25^{\circ} \mathrm{C}$ and nitrogen pressure of 522 mmHg is 4.7×10^{-4} $\mathrm{mol} / \mathrm{L}$. what is the value of Henry's Law in mol/L.atm ?
a) $6.8 \times 10^{-4} \mathrm{M} / \mathrm{atm}$
b) $4.7 \times 10^{-4} \mathrm{M} / \mathrm{atm}$
c) $3.2 \times 10^{-4} \mathrm{M} / \mathrm{atm}$
d) $9.0 \times 10^{-7} \mathrm{M} / \mathrm{atm}$
e) $1.5 \times 10^{-3} \mathrm{M} / \mathrm{atm}$
$\mathrm{C}=\mathrm{kP}$
$P=522 \mathrm{mmHg}=522 / 760=0.69 \mathrm{~atm}$

$$
\begin{aligned}
\mathrm{k} & =\frac{C}{P} \\
& =\frac{4.7 \times 10^{-4}}{0.69}=6.8 \times 10^{-4} \mathrm{M} / \mathrm{atm}
\end{aligned}
$$

Chapter Three

5. Calculate the molality of a solution containing 14.3 g of NaCl in 42.2 g of water ?

a) $2.45 \times 10^{-4} \mathrm{~m}$	b) $5.80 \times 10^{-4} \mathrm{~m}$	c) $2.45 \times 10^{-1} \mathrm{~m}$	d) 103 m	e) 5.80 m L

6. The solubility of gases in water usually decreases with
a) Increasing pressure
b) Increasing temperature
d) Decreasing temperature
7. The solubility of nitrogen gas at $25^{\circ} \mathrm{C}$ and nitrogen pressure of 522 mmHg is 4.7×10^{-4} $\mathrm{mol} / \mathrm{L}$. what is the value of Henry's Law in mol/L.atm ?

8. The solubility of CO_{2} gas in water:
a) Increases with increasing temperature
b) Decreases with increasing temperature
c) Decreases with decreasing temperature
d) Is not dependent on temperature

Chapter Three

9. Consider a solution made from nonvolatiale solute and volatile solvent. Which
a) The vapor pressure of the solution is always grater than the vapor pressure of the pure solvent
b) The boiling point of the solution is always grater than the boiling point of the pure solvent
c) The freezing point of the solution is always grater than the freezing point of the pure solvent
10. Dissolving a solute such as KOH in s solvent such as water result in:
a) An increase in the melting point of the liquid.
b) A decrease in the boiling point of the liquid.
c) A decrease in the vapor pressure of the liquid.
d) No change in the boiling point of the liquid.
11. Which of the following aqueous solution has the highest boiling point? K_{b} for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$?
a) 0.2 m KCl
b) $0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $0.2 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
d) 0.2 m KCl and $0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
e) $0.2 \mathrm{~m} \mathrm{Na} \mathrm{Na}_{4}$ and $0.2 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

Chapter Three

11. Which of the following aqueous solution has the highest boiling point? K_{b} for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$?

Chapter Three

9. Consider a solution made from nonvolatiale solute and volatile solvent. Which
a) The vapor pressure of the solution is always grater than the vapor pressure of the pure solvent
b) The boiling point of the solution is always grater than the boiling point of the pure solvent
c) The freezing point of the solution is always grater than the freezing point of the pure solvent
10. Dissolving a solution such as KOH in s solvent such as water result in:
a) An increase in the melting point of the liquid.
b) A decrease in the boiling point of the liquid.
c) A decrease in the vapor pressure of the liquid.
d) No change in the boiling point of the liquid.
11. Which of the following aqueous solution has the highest boiling point? K_{b} for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$?
a) 0.2 m KCl
b) $0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $0.2 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
d) 0.2 m KCl and $0.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$

Chapter Three

12. Calculate the freezing point od a solution made from 22 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ dissolved in 148 g of benzene. Benzene freezes at $5.5^{\circ} \mathrm{C}$ and its k_{f} value is $5.12^{\circ} \mathrm{C} / \mathrm{m}$?
a) $-1.16{ }^{\circ} \mathrm{C}$
b) $0.98^{\circ} \mathrm{C}$
c) $6.66{ }^{\circ} \mathrm{C}$
d) $12.2^{\circ} \mathrm{C}$
e) $5.49{ }^{\circ} \mathrm{C}$
$\Delta T_{f}=k_{f} x m$
$\mathrm{m}=\frac{\text { mole of solut }}{\text { mass of solvent }(\mathrm{kg})}$
Solute $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=22 \mathrm{~g}$
mole of $\mathrm{C}_{8} \mathrm{H}_{18}=\frac{\text { mass }}{\text { molar mass }}=\frac{22}{114^{\circ}}=\stackrel{\circ}{0.19 \mathrm{~mol}}$

solvent (benzene) $=148 \mathrm{~g}=148 \times 10^{-3} \mathrm{~kg}$
$\mathrm{m}=\frac{0.19}{148 \times 10^{-3}}=1.304 \mathrm{~m}$
$\Delta T_{f}=5.12 x 1.304=6.68^{\circ} \mathrm{C}$
$\Delta T_{f}=T_{f}^{\circ}-T_{f}$
$6.68=5.5-T_{f}$

$$
\begin{aligned}
T_{f} & =5.5-6.68 \\
& =-1.16^{\circ} \mathrm{C}
\end{aligned}
$$

Chapter Three

12. Calculate the freezing point od a solution made from 22 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ dissolved in 148 g of benzene. Benzene freezes at $5.5^{\circ} \mathrm{C}$ and its k_{f} value is $5.12^{\circ} \mathrm{C} / \mathrm{m}$?
a) $-1.16{ }^{\circ} \mathrm{C}$
b) $0.98^{\circ} \mathrm{C}$
c) $6.66{ }^{\circ} \mathrm{C}$
d) $12.2{ }^{\circ} \mathrm{C}$
e) $5.49{ }^{\circ} \mathrm{C}$
13. What is the molar mass of toluene if 0.85 g of toluene depresses the freezing point of 100 g of benzene by $0.47^{\circ} \mathrm{C}$? k_{f} of benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$
a) $92.6 \mathrm{~g} / \mathrm{mol}$
b) $78.0 \mathrm{~g} / \mathrm{mol}$
c) $10.7 \mathrm{~g} / \mathrm{mol}$
d) $81.8 \mathrm{~g} / \mathrm{mol}$
e) $927 \mathrm{~g} / \mathrm{mol}$
$\Delta T_{f}=k_{f} x m$
$m=\frac{\Delta T_{f}}{k_{f}}=\frac{0.47}{5.12}=0.092 \mathrm{~m}$
$\mathrm{m}=\frac{\text { mole of solut }}{\text { mass of solvent }(\mathrm{kg})}$
Mole of solute $=m \times$ mass of solvent kg)

$$
=0.092 \times 100 \times 10^{-3}=0.0092
$$

molar mass $=\frac{\text { mass }}{\text { mole }}=\frac{0.85}{0.0092}=92.4 \mathrm{~g} / \mathrm{mol}$

Chapter Three

12. Calculate the freezing point od a solution made from 22 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ dissolved in 148 g of benzene. Benzene freezes at $5.5^{\circ} \mathrm{C}$ and its k_{f} value is $5.12^{\circ} \mathrm{C} / \mathrm{m}$?
a) $-1.16{ }^{\circ} \mathrm{C}$
b) $0.98{ }^{\circ} \mathrm{C}$
c) $6.66{ }^{\circ} \mathrm{C}$
d) $12.2^{\circ} \mathrm{C}$
e) $5.49{ }^{\circ} \mathrm{C}$
13. What is the molar mass of toluene if 0.85 g of toluene depresses the freezing point of 100 g of benzene by $0.47{ }^{\circ} \mathrm{C}$? k_{f} of benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$
a) $92.6 \mathrm{~g} / \mathrm{mol}$
b) $78.0 \mathrm{~g} / \mathrm{mol}$
c) $10.7 \mathrm{~g} / \mathrm{mol}$
d) $81.8 \mathrm{~g} / \mathrm{mol}$
e) $927 \mathrm{~g} / \mathrm{mol}$
14. 0.102 g of an unknown compound dissolved in 100 ml of water has an osmotic pressure of 281 mmHg at $20^{\circ} \mathrm{C}$. calculate the molar mass of the compound?
a) $663 \mathrm{~g} / \mathrm{mol}$
b) $0.872 \mathrm{~g} / \mathrm{mol}$
c) $1.15 \mathrm{~g} / \mathrm{mol}$
d) $727 \mathrm{~g} / \mathrm{mol}$
e) $1.10 \times 10^{2} \mathrm{~g} / \mathrm{mol}$
$\pi=M R T \quad \pi=281 \mathrm{mmHg}=\frac{281}{760}=0.037 \mathrm{~atm}, \mathrm{~T}=20^{\circ} \mathrm{C}=20+273=293 \mathrm{~K}$
$M=\frac{\pi}{R T}=\frac{0.037}{0.0821 \times 293}=0.00154 M \quad$ molar mass $=\frac{\text { mass }}{\text { mole }}=\frac{0.102}{0.000154}$
$M=\frac{n}{V(l)}$
$n=M X V=0.00154 \times 100 \times 10-3=0.000154$ mole

Chapter Three

12. Calculate the freezing point od a solution made from 22 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ dissolved in 148 g of benzene. Benzene freezes at $5.5^{\circ} \mathrm{C}$ and its k_{f} value is $5.12^{\circ} \mathrm{C} / \mathrm{m}$?
a) $-1.16{ }^{\circ} \mathrm{C}$
b) $0.98{ }^{\circ} \mathrm{C}$
c) $6.66{ }^{\circ} \mathrm{C}$
d) $12.2{ }^{\circ} \mathrm{C}$
e) $5.49{ }^{\circ} \mathrm{C}$
13. What is the molar mass of toluene if 0.85 g of toluene depresses the freezing point of 100 g of benzene by $0.47^{\circ} \mathrm{C}$? k_{f} of benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$
a) $92.6 \mathrm{~g} / \mathrm{mol}$
b) $78.0 \mathrm{~g} / \mathrm{mol}$
c) $10.7 \mathrm{~g} / \mathrm{mol}$
d) $81.8 \mathrm{~g} / \mathrm{mol}$
e) $927 \mathrm{~g} / \mathrm{mol}$
14. 0.102 g of an unknown compound dissolved in 100 ml of water has an osmotic pressure of 281 mmHg at $20^{\circ} \mathrm{C}$. calculate the molar mass of the compound?
a) $663 \mathrm{~g} / \mathrm{mol}$
) $0.872 \mathrm{~g} / \mathrm{mol}$
c) $1.15 \mathrm{~g} / \mathrm{mol}$
d) $727 \mathrm{~g} / \mathrm{mol}$
e) $1.10 \times 10^{2} \mathrm{~g} / \mathrm{mol}$
15. The osmotic pressure of a $0.010 \mathrm{M} \mathrm{MgSO}_{4}$ solution at $25^{\circ} \mathrm{C}$ is 0.318 atm . Calculate i, the van't Hoff factor, for this MgSO_{4} solution?
a) 0.013
b) 1.3
c) 1.5
d) 2.0
e) 76.8

Chapter Three

15. The osmotic pressure of a $0.010 \mathrm{M} \mathrm{MgSO}_{4}$ solution at $25^{\circ} \mathrm{C}$ is 0.318 atm . Calculate i, the van't Hoff factor, for this MgSO_{4} solution?
a) 0.013
b) 1.3
c) 1.5
d) 2.0
e) 76.8

$$
\begin{aligned}
\pi & =i M R T \\
i & =\frac{\pi}{M R T} \\
& =\frac{0.318}{0.01 \times 0.0821 \times(25+273)} \\
& =1.3
\end{aligned}
$$

Chapter Three

12. Calculate the freezing point of a solution made from 22 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ dissolved in 148 g of benzene. Benzene freezes at $5.5^{\circ} \mathrm{C}$ and its k_{f} value is $5.12^{\circ} \mathrm{C} / \mathrm{m}$?

| a) $-1.16{ }^{\circ} \mathrm{C}$ b) $0.98{ }^{\circ} \mathrm{C}$ | c) $6.66{ }^{\circ} \mathrm{C}$ | d) $12.2{ }^{\circ} \mathrm{C}$ | e) $5.49{ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |

13. What is the molar mass of toluene if 0.85 g of toluene depresses the freezing point of 100 g of benzene by $0.47^{\circ} \mathrm{C}$? k_{f} of benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$
a) $92.6 \mathrm{~g} / \mathrm{mol}$
b) $78.0 \mathrm{~g} / \mathrm{mol}$
c) $10.7 \mathrm{~g} / \mathrm{mol}$
d) $81.8 \mathrm{~g} / \mathrm{mol}$
e) $927 \mathrm{~g} / \mathrm{mol}$
14. 0.102 g of an unknown compound dissolved in 100 ml of water has an osmotic pressure of 281 mmHg at $20^{\circ} \mathrm{C}$. calculate the molar mass of the compound?

a) $663 \mathrm{~g} / \mathrm{mol}$	b) $0.872 \mathrm{~g} / \mathrm{mol}$	c) $1.15 \mathrm{~g} / \mathrm{mol}$	d) $727 \mathrm{~g} / \mathrm{mol}$	e) $1.10 \times 10^{2} \mathrm{~g} / \mathrm{mol}$

15. The osmotic pressure of a $0.010 \mathrm{M} \mathrm{MgSO}_{4}$ solution at $25^{\circ} \mathrm{C}$ is 0.318 atm . Calculate i, the van't Hoff factor, for this MgSO_{4} solution?
a) 0.013
b) 1.3
c) 1.5
d) 2.0
e) 76.8
