

1

Electrochemistry Chapter 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemical processes are oxidation-reduction reactions in which:

- the energy released by a spontaneous reaction is converted to electricity or
- electrical energy is used to cause a nonspontaneous reaction to occur

$${}^{0}_{2\text{Mg}} (s) + {}^{0}_{2} (g) \longrightarrow {}^{2+2-}_{2\text{MgO}} (s)$$

2Mg \longrightarrow 2Mg²⁺ + 4e⁻ **Oxidation** half-reaction (lose e⁻) O₂ + 4e⁻ \longrightarrow 2O²⁻ **Reduction** half-reaction (gain e⁻)

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

3. The oxidation number of oxygen is **usually** –2. In H_2O_2 and O_2^{2-} it is –1.

- 4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1. Na⁺¹H⁻¹ = 0 Ca²⁺ H₂⁻¹ = 0
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion. CO_2 C + 2x-2 = 0 HCO₃-C-4 = 0; C = +4

Oxidation numbers of all O = -2 H = +1the atoms in HCO_3^- ? 3x(-2) + 1 + ? = -1CH₃COOH 2C + 4x1 + 2x-2 = 0C = +42C + 4 - 4 = 02C = 0; C = 0/2 =

4

Balancing Redox Equations

The oxidation of Fe²⁺ to Fe³⁺ by $Cr_2O_7^{2-}$ in acid solution?

1. Write the unbalanced equation for the reaction in ionic form. Fe Cl₂ Fe + 2 x -1 = 0 Fe²⁺ + Cr₂O₇²⁻ \longrightarrow Fe³⁺ + Cr³⁺ Fe = 2+ 2. Separate the equation into two half-reactions. Cr₂O₇²⁻ 2Cr + 7 x-2 = 2- Oxidation: Cr = +12/2 = +6 Reduction: $\stackrel{+2}{}_{Cr_{2}O_{7}^{2-}} \stackrel{+3}{\longrightarrow} \stackrel{+3}{}_{Cr^{3+}}$

3. Balance the atoms other than O and H in each half-reaction.

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+}$$

Balancing Redox Equations

4. For reactions in acid, add H_2O to balance O atoms and H⁺ to balance H atoms.

 $Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$ $14H^+ + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

5. Add electrons to one side of each half-reaction to balance the charges on the half-reaction.

$$Fe^{2+} \longrightarrow Fe^{3+} + \underbrace{1e^{-}}_{6e^{-}} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$$

 If necessary, equalize the number of electrons in the two halfreactions by multiplying the half-reactions by appropriate coefficients.

 $6e^{-} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

Balancing Redox Equations

7. Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel.

Oxidation: $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-1}$ Reduction: $6e^{-1} + 14H^{+} + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O^{-1}$ $14H^{+} + Cr_2O_7^{2-} + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O^{-1}$

8. Verify that the number of atoms and the charges are balanced.

$$14x1 - 2 + 6x2 = 24 = 6x3 + 2x3$$

 For reactions in basic solutions, add OH⁻ to both sides of the equation for every H⁺ that appears in the final equation.

Anode – electrode at which oxidation occurs

Cathode – electrode at which reduction occurs

Electrons always flow from anode to cathode Salt bridge – tube that contains an electrolytes , maintains charge neutrality for a voltaic cell

The difference in electrical potential between the anode and cathode is called:

- cell voltage
- electromotive force (emf)
- cell potential

Cell Diagram $Zn (s) + Cu^{2+} (aq) \longrightarrow Cu (s) + Zn^{2+} (aq)$ $[Cu^{2+}] = 1 M \& [Zn^{2+}] = 1 M$ $Zn (s) | Zn^{2+} (1 M) || Cu^{2+} (1 M) | Cu (s)$ anode anodecathode

Standard reduction potential (E^{0}) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.

Standard hydrogen electrode (SHE)

 $E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0}$ $E_{cell}^{0} = E_{Cu}^{0} + C_{Cu}^{2} - E_{H}^{0} + C_{H}^{2}$ $0.34 = E_{Cu}^{0} + C_{Cu}^{2} - 0$ $E_{Cu}^{0} + C_{Cu}^{2} + C_{U}^{2} - 0$

Pt (s) | H₂ (1 *atm*) | H⁺ (1 *M*) || Cu²⁺ (1 *M*) | Cu (s) Anode (oxidation): H₂ (1 *atm*) \longrightarrow 2H⁺ (1 *M*) + 2e⁻ Cathode (reduction): 2e⁻ + Cu²⁺ (1 *M*) \longrightarrow Cu (s) H₂ (1 *atm*) + Cu²⁺ (1 *M*) \longrightarrow Cu (s) + 2H⁺ (1 *M*) 26

Standard Reduction Potentials at 25°C*

+Ve

agent

Dxidizing

agent

reducing

-ve

$F_{2}(g) + 2e^{-} \longrightarrow 2F^{-}(aq)$ $O_{3}(g) + 2H^{+}(aq) + 2e^{-} \longrightarrow O_{2}(g) + H_{2}O$ $Co^{3+}(aq) + e^{-} \longrightarrow Co^{2+}(aq)$	+2.87 +2.07	
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$ $Co^{3+}(aq) + e^- \longrightarrow Co^{2+}(aq)$	+2.07	
$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$		
	+1.82	
$H_2O_2(aa) + 2H^+(aa) + 2e^- \longrightarrow 2H_2O_2(aa)$	+1.77	
$PbO_2(s) + 4H^+(aa) + SO_4^{2-}(aa) + 2e^- \longrightarrow F$	$PbSO_4(s) + 2H_2O_{-} + 1.70$	
$\operatorname{Ce}^{4+}(aa) + e^{-} \longrightarrow \operatorname{Ce}^{3+}(aa)$	+1.61	
$MnO_{+}^{-}(aa) + 8H^{+}(aa) + 5e^{-} \longrightarrow Mn^{2+}(aa)$	$+ 4H_{2}O + 1.51$	
$\operatorname{Au}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Au}(s)$	+1.50	
$Cl_2(q) + 2e^- \longrightarrow 2Cl^-(qq)$	+1.36	
$Cr_2 \Omega_2^{-1}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq)$	$a) + 7H_{2}O + 1.33$	
$Mn\Omega_2(s) + 4H^+(aa) + 2e^- \longrightarrow Mn^{2+}(aa) +$	$2H_{2}O$ +1.33	
$\Omega_{r}(q) + 4H^{+}(qq) + 4e^{-} \longrightarrow 2H_{r}\Omega$	+1.23	
$Br_{-}(l) + 2a^{-} \longrightarrow 2Br^{-}(aa)$	+1.07	
$NO_{-}^{-}(aq) + 4H^{+}(aq) + 3e^{-} \longrightarrow NO(q) + 2H$	+0.96	
$2Hg^{2+}(aq) + 2e^{-} \longrightarrow Hg^{2+}(aq)$	+0.92	
$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.92	
$ \Lambda g^+(aa) + a^- \longrightarrow \Lambda g(c) $	+0.85	
$\operatorname{Ag}^{(uq)} + e \longrightarrow \operatorname{Ag}(3)$ $\operatorname{Eo}^{3+}(aa) + a^{-} \longrightarrow \operatorname{Eo}^{2+}(aa)$	+0.80	
$Pe^{-}(aq) + e^{-} \longrightarrow Pe^{-}(aq)$	+0.77	
$O_2(g) + 2H (aq) + 2e \longrightarrow H_2O_2(aq)$ $M_2O_2(aq) + 2H O_2 + 2e^- \longrightarrow M_2O_2(aq)$	-10.08	
$\lim_{a \to a} O_4(aq) + 2H_2O + 3e \longrightarrow \lim_{a \to a} O_2(s) + 4c$	+0.53	=
$1_{2(3)} + 2e \longrightarrow 21 (uq)$	+0.40	Da la
$C_{2}(g) + 2H_{2}O + 4e \longrightarrow 40H (uq)$	+0.34	20
$\overset{\text{in}}{\longrightarrow} \Delta \mathfrak{g}(\mathfrak{g}) + 2\mathfrak{e}^{-} \longrightarrow \Delta \mathfrak{g}(\mathfrak{g}) + \mathfrak{g}^{-}(\mathfrak{g}\mathfrak{g})$	+0.22	5
$\begin{array}{c} RgCl(3) + \mathfrak{e} & \longrightarrow Rg(3) + Cl^{-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) + 4H^{+}(\mathfrak{a}q) + 2\mathfrak{e}^{-} \longrightarrow SO_{2}(\mathfrak{a}) + 2H^{-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) + SO^{2-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) + SO^{2-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) + SO^{2-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) + SO^{2-}(\mathfrak{a}q) \\ SO^{2-}(\mathfrak{a}q) \\$	H-O +0.22	
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	+0.15	
$= \operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13	
$ = 2H^+(aq) + 2e^- \longrightarrow H_2(q) $	0.00	ŝ
$ \begin{array}{c} \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) + 2e^{-} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) + 2e^{-} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ Ph^{2+}(aq) \\ Ph^{2+}(aq) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Ph^{2+}(aq) \\ Ph^{2+$	-0.13	SUIC
$ \sum_{n=1}^{\infty} \operatorname{Sp}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sp}(s) $	-0.14	a
$\underset{\text{vis}}{\overset{\text{in}}{\underset{\text{set}}{\text{Ni}}^{2+}(aq) + 2e^{-} \longrightarrow \text{Ni}(s)}} \text{Ni}(s)$	-0.25	gol
$\sum_{i=1}^{\infty} Co^{2+}(aq) + 2e^{-} \longrightarrow Co(s)$	-0.28	5
$\frac{1}{1} PbSO(s) + 2a^{-} \rightarrow Pb(s) + SO^{2-}(aa)$	-0.31	I
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40	
$\operatorname{Ee}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ee}(s)$	-0.44	
$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$	-0.74	
$\operatorname{Zn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.76	
$2H (aq) + 2e^{-} \longrightarrow H_1(q) + 2OH^{-}(qq)$	-0.83	
$Mn^{2+}(aq) + 2e^{-} \longrightarrow Mn(s)$	-1.18	
$A1^{3+}(aa) + 3e^{-} \longrightarrow A1(s)$	-1.66	
$\operatorname{Re}^{2+}(aq) + 2a^{-} \rightarrow \operatorname{Re}(s)$	-1.85	
$\operatorname{Be}^{(aq)} + 2e^{-} \longrightarrow \operatorname{Be}(s)$ $\operatorname{Mg}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Mg}(s)$	-2.27	
$\operatorname{Ng}^+(aq) + 2e \longrightarrow \operatorname{Ng}(s)$	-2.37	
$\operatorname{Na}(aq) + e \longrightarrow \operatorname{Na}(s)$ $\operatorname{Ce}^{2+}(zz) + 2z^{-} \longrightarrow \operatorname{Ce}(z)$	-2.71	
$\operatorname{Ca}^{(uq)} + 2e^{-} \longrightarrow \operatorname{Ca}(s)$ $\operatorname{Sr}^{2+}(aq) + 2a^{-} \longrightarrow \operatorname{Sr}(q)$	-2.87	
$\operatorname{Sr}(dq) + 2e \longrightarrow \operatorname{Sr}(s)$ $\operatorname{Pe}^{2+}(aq) + 2a^{-} \longrightarrow \operatorname{Pe}(a)$	-2.89	
$\operatorname{Ba}(aq) + 2e \longrightarrow \operatorname{Ba}(s)$	-2.90	
$\mathbf{V}^+(aa) \pm a^- \rightarrow \mathbf{V}(a)$	-2.91	
$\mathbf{K}^+(aq) + e^- \longrightarrow \mathbf{K}(s)$ $\mathbf{L}_{i}^{++}(aq) + e^- \longrightarrow \mathbf{L}_{i}(q)$	_2.05	

 E^0 is for the reaction as written

- The more positive *E*⁰ the greater the tendency for the substance to be reduced
- The half-cell reactions are reversible
- The sign of *E*⁰ changes when the reaction is reversed
- Changing the stoichiometric coefficients of a half-cell reaction *does not* change the value of E^0

*For all half-reactions the concentration is 1 M for dissolved species and the pressure is 1 atm for gases. These are the standard-state values.

Example 6.1 What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO₃)₂ solution and a Cr electrode in a 1.0 M Cr(NO₃)₃ solution?

$$Cd^{2+} (aq) + 2e^{-} \longrightarrow Cd (s) \quad E^{0} = -0.40 \text{ V} \quad Cd \text{ is the stronger oxidizer}$$

$$Cr^{3+} (aq) + 3e^{-} \longrightarrow Cr (s) \quad E^{0} = -0.74 \text{ V} \qquad Cd \text{ will oxidize Cr}$$
Anode (oxidation):
$$Cr (s) \longrightarrow Cr^{3+} (1 M) + 3e^{-} \times 2$$

$$Cathode (reduction): 2e^{-} + Cd^{2+} (1 M) \longrightarrow Cd (s) \times 3$$

$$2Cr (s) + 3Cd^{2+} (1 M) \longrightarrow 3Cd (s) + 2Cr^{3+} (1 M)$$

$$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$$

$$E^{0}_{cell} = -0.40 - (-0.74)$$

 $E_{cell}^0 = 0.34 \text{ V}$

28

Example 6.2: Use electrode potential to determine whether the following proposed reactions are spontaneous with all substances present at unit activity:

a) $Cl_2(g) + 2l^2(aq) \rightarrow 2Cl^2(aq) + l_2(s)$

b)2Ag(s)+2H⁺(aq) \rightarrow 2Ag⁺(aq)+H₂(g)

a) Fist we have to see who is reduced and who is oxidized . Cl₂ is reduced I⁻ is oxidized Cathode Anode reactor

 $Cl_2 + 2e \rightarrow 2Cl^- E^{\circ}_{Cl/Cl} = +1.36V$ $2l^- \rightarrow l_2(s) + 2e E^{\circ}_{l/l} = +0.536V$

Cell reaction $Cl_2+2l^2 \rightarrow l^2(s)+2Cl^2(aq)$,

 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$

$$E^{\circ}_{cell} = +1.36 - 0.536 = +0.824 V$$

Since E°_{cell} is +ve the reaction is spontaneous

b)2Ag(s)+2H⁺(aq) \rightarrow 2Ag⁺(aq)+H₂(g)

H+ is reducedAg is oxidizedCathode reaction:Anode reaction: $2H^++2e^- \rightarrow H_2$ (g) $E^\circ = 0.00V$ $2Ag(s) \rightarrow 2Ag^+(aq) + 2e E^\circ_{Aq+/Aq} = +0.799V$

 $2Ag + 2H^+(aq) \rightarrow 2Ag^+(aq) + H_2(g)$

 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$

 $E_{cell}^{o} = 0.0 - 0.799 = -0.799 V$

The result is nonspontaneous, $E^{\circ}_{cell} = -ve$

Spontaneity of Redox Reactions

 $\Delta G = -nFE_{cell}$ n = number of moles of electrons in reaction $\Delta G^0 = -nFE_{cell}^0$ $F = 96,500 \frac{J}{V \cdot mol} = 96,500 \text{ C/mol}$ $\Delta G^{0} = -RT \ln K = -nFE^{0}_{cell}$ $E_{\text{cell}}^{0} = \frac{RT}{nF} \ln K = \frac{(8.314 \text{ K} \cdot \text{mol})(298 \text{ K})}{n (96.500 \text{ V} \cdot \text{mol})} \ln K$ E°_{cell} C Million $E_{\rm cell}^0 = \frac{0.0257 \text{ V}}{n} \ln K$ ΔG° $\Delta G^{\circ} = -RT\ln K$ 31

Spontaneity of Redox Reactions

Relationships among ΔG° , K, and E°_{cell}				
ΔG°	к	E cell	Reaction under Standard-State Conditions	
Negative	>1	Positive	Favors formation of products.	
0	=1	0	Reactants and products are equally favored.	
Positive	<1	Negative	Favors formation of reactants.	

Example 6.3 What is the equilibrium constant for the following reaction at 25°C? Fe²⁺ (aq) + 2Ag (s) $\overrightarrow{}$ Fe (s) + 2Ag⁺ (aq)

$$E_{\rm cell}^0 = \frac{0.0257 \,\,\rm V}{n} \,\,\rm ln \,\,K$$

Oxidation:
$$2Ag \rightarrow 2Ag^{+} + 2e^{-}$$

Reduction: $2e^{-} + Fe^{2+} \rightarrow Fe$
 $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Ag^{+}/Ag}$
 $E^{0} = -0.44 - (0.80)$
 $E^{0} = -1.24 \text{ V}$
 $K = \exp\left[\frac{E^{0}_{cell} \times n}{2.0257 \text{ V}}\right] = \exp\left[\frac{-2}{3}\right]$

$$K = \exp\left[\frac{E_{cell}^{0} \times n}{0.0257 \text{ V}}\right] = \exp\left[\frac{-1.24 \text{ V} \times 2}{0.0257 \text{ V}}\right]$$
$$K = 1.23 \times 10^{-42}$$

Example 6.4: a) Use electrochemical data to calculate the value of ΔG° for the reaction 2Ag (s) + Cl₂ (g) \rightarrow 2AgCl (s) b) If $\Delta H^{\circ} = -254.0 \text{ K}_{\text{S}}$, calculate ΔS°

a) We have to calculate E°_{cell} from the two half cell reactions.

Anode reaction:

2Ag (s) + Cl
$$^-$$
 (aq) \rightarrow 2Ag Cl(s) + 2e⁻ $E^{\circ}_{Ag+/Ag}$ = +0.222V

Cathode reaction:

$$2e^{-} + Cl_2(s) \rightarrow 2 Cl^{-}(aq)$$
 , $E^{\circ}_{Cl/Cl} = +1.369V$

$$\begin{array}{ll} 2Ag\ (s) + Cl_{2}\ (g) \rightarrow 2AgCl\ (s) \ , & \Delta G^{\circ} = -nf\ E^{\circ}_{\ cell} \\ E^{\circ}_{\ cell} = E^{\circ}_{\ Cl/Cl} - E^{\circ}_{\ Ag+/Ag} & = -2x96500\ x\ 1.137\ J \\ E^{\circ}_{\ cell} = +1.369 - 0.222 = 1.137V & = -219.4\ kJ \end{array}$$

b)
$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$-219.4 \times 1000 J = -254.0 \times 1000 J - 298 \Delta SJ/K$

$\Delta S^{\circ} = - (254.0 - 219.4) 1000J$ 298 K

= -116 J/K

Example 6.5: Use electrochemical data to calculate the equilibrium constant K for the following reaction at 25°C $Fe^{++}(aq) + Ag^{+}(aq) \rightleftharpoons Fe^{+++}(aq) + Ag(s)$ $Fe^{++}(aq) \rightarrow Fe^{+++}(aq) + e^{-}$ $E^{\circ}_{Fe3+/Fe2+} = +0.771V$ e^{-} + Ag⁺(aq) \rightarrow Ag(s) $E^{\circ}_{Aq+/q} = 0.799V$ *n* = 1, T=25 °C= 298 K, F=96500 $E^{\circ}_{cell} = E^{\circ}_{cath} - E^{\circ}_{anode}$ $E_{cell}^{\circ} = - (RT/nF) \ln K$ $E^0 = 0.799 - 0.771$ 0.028 = - (8.314x298 /1x96500) In K $E^0 = 0.028 \text{ V}$ ∴ In K = 1.091

∴ K = 2.98

The Effect of Concentration on Cell Emf $\Delta G = \Delta G^{0} + RT \ln Q \qquad \Delta G = -nFE \qquad \Delta G^{0} = -nFE^{0}$ $-nFE = -nFE^{0} + RT \ln Q$

Nernst equation

$$E = E^0 - \frac{RT}{nF} \ln Q$$

At 298

$$E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$$

Ex 6.6 Will the following reaction occur spontaneously at $25^{\circ}C$ if [Fe²⁺] = 0.60 *M* and [Cd²⁺] = 0.010 *M*? $Fe^{2+}(aq) + Cd(s) \longrightarrow Fe(s) + Cd^{2+}(aq)$ $Cd \longrightarrow Cd^{2+} + (2e^{-1})$ Oxidation: n = 2Reduction: $(2e^{2} + Fe^{2+} \longrightarrow 2Fe$ $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Co^{2+}/Cd}$ $E^0 = -0.44 - (-0.40)$ $E = E^0 - \frac{0.0257 \text{ V}}{2} \ln Q$ $E^0 = -0.04 \text{ V}$ $E = -0.04 \text{ V} - \frac{0.0257 \text{ V}}{2} \ln \frac{0.010}{0.60}$ E = 0.013

E > 0 Spontaneous

Example 6.7: What is the electrode potential of Zn^{++}/Zn electrode in which the concentration of $Zn^{++} = 0.1M$.

Zn⁺⁺+2e⁻ →Zn , E[°] = -0.76 V
At 298
$$E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$$

 $E = -0.76 - (0.0257/2 \ln (1/0.1))$
= -0.79V

Example 6.8: What is the potential for the cell : Ni / Ni⁺⁺ (0.01M) // Cl⁻ (0.2 M) / Cl₂ M) / Pt

$$\begin{split} \text{Ni} &\to \text{N}_{i}^{++} + 2\text{e}^{-} & \text{E}^{\circ} \text{ }_{\text{Ni2+/Ni}} = -0.25\text{V} \\ 2\text{e}^{-} + \text{Cl}_{2} (\text{g}) &\to 2\text{Cl}^{-} & \text{E}_{\circ} \text{ }_{\text{Cl/Cl}^{-}} = 1.36\text{V} \\ 2\text{Ni} + \text{Cl}_{2} (\text{g}) &\to 2\text{Cl}^{-} (\text{aq}) + \text{Ni}^{++} (\text{aq}) \\ \text{E}^{\circ}_{\text{cell}} = 1.36 - (-0.25) = 1.61\text{V} \end{split}$$

$$E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$$

 $Q = [CI^{-}]^{2} [Ni^{++}] / P_{Cl2} = ((0.2)2 (0.01)/1 = 0.0004$

Example 6.9: Consider a cell reaction $Mg(s) + 2H^+ (aq) \rightarrow Mg^{++}(aq) + H_2 (g)$, $E^{\circ}_{cell} = 2.363V$ What is the concentration of H⁺ (aq) in a cell in which $[Mg^{++}] =$ 1.00M and $P_{H_2} = 1.0$ atm, if the Ecell = 2.099 V? At 298 : $E = E^0 - \frac{0.0257 \text{ V}}{5} \ln Q$ n = 2 $Q = (Mg^{+2}) P_{H_2} / (H^+)^2 = (1)(1) / (H^+)^2$ 2.099 = 2.363- (0.0257/2) ln (1/(H⁺)²) $2.099 - 2.363 = -0.0128 \ln [H^+]^{-2}$ $\ln [H^+]^{-2} = 20.625$ $[H^+]^{-2} = 906407915.01$

 $[H^+] = 3.3 \times 10^{-5} \text{ M}$

High concentration = reduction , low concentration = oxidation

Example 6.10: What is the E for the cell : Cu / Cu⁺⁺ (0.01M) // Cu⁺⁺ (0.1M) // Cu .

$$Cu^{++} + 2e^{-} \rightarrow Cu (s) \quad E^{\circ} = -0.34 V$$

$$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$$

 $E^{0}cell = -0.34 - (-0.34) = 0.0 V$

Electrolysis is the process in which electrical energy is used to cause a *nonspontaneous* chemical reaction to occur.

- •In electrolytic solution, the charge is carried by ions.
- Ions must be free to move.
- •Occurs at molten salts or aqueous solutions of electrolyte.

Electrolysis of molten NaCl

Always reduction occurs at the cathode

Anode reaction

 $2 \text{ Cl}^{-} \rightarrow \text{Cl}_{2} + 2e^{-}$

Always oxidization occurs at the anode

Anode (oxidation): $2\text{Cl}^{-}(l) \longrightarrow \text{Cl}_{2}(g) + 2e^{-}$ Cathode (reduction): $2\text{Na}^{+}(l) + 2e^{-} \longrightarrow 2\text{Na}(l)$ Overall: $2\text{Na}^{+}(l) + 2\text{Cl}^{-}(l) \longrightarrow 2\text{Na}(l) + \text{Cl}_{2}(g)$

Electrolysis and Mass Changes

charge (C) = current (A) x time (s)

1 mole e⁻ = 96,500 C

Ex 6.11:How much Ca will be produced in an electrolytic cell of molten $CaCl_2$ if a current of 0.452 A is passed through the cell for 1.5 hours?

 $2CI^{-}(I) \longrightarrow CI_{2}(g) + 2e^{-}$

 $Ca^{2+}(l) + 2Cl^{-}(l) \longrightarrow Ca(s) + Cl_{2}(g)$

Cathode:

Anode:

Ca²⁺ (/) + 2e⁻

2 mole $e^{-} = 1$ mole Ca 96500 = 1mol e , So 2 moles of electrons requires = 2x 96500

→ Ca (s)

Q =I x t = $0.452 \times 1.5 \times 3600 = 2440 \text{ C}$ 193000 C = 1 mole Ca 2440 C = x X = 2440 x 1 / 193000 = 0.0126 mol Ca Mass = $0.0126 \times 40 = 0.5 \text{ g Ca}$ Example 6.12:a) In the electrolysis of $CuSO_4$, How much copper is plated out on the cathode by a current of 0.75 A in 10 min ?

b) What the volume of O_2 (g) at STP is liberated ?

a) C = A x t (s) = 0.75 x 10 x 60 = 450C
Cu⁺⁺ + 2 e⁻
$$\rightarrow$$
 Cu (s)

From the equation we have:

$$2 F = 2 \times 96500C \equiv 1 \mod Cu = 63.5g Cu$$

? g of Cu = 450 x 63.5g / 2 x 96500 = 0.148g Cu

b)
$$2H_2O \rightarrow O_2(g) + 4H^+ + 4 e^-$$

 $4 F \equiv 4x96500 C = 1 \text{ mole } O_2 \equiv 24.5 \text{ L}$
 $450C \rightarrow ? \text{ L}$
 $?L = 450 \times 24.5 / 4 \times 96500$
 $= 2.83 \times 10^{-2} \text{ L} O_2(g)$

Example 6.13: a) What mass of copper is plated in the electrolysis of $CuSO_4$ in the same time 1.0g of Ag is plated in a silver coulometer that arranged in series with $CuSO_4$ cell ? b) If 1.0 A is passed , how many minutes are required to plate this quantity ?

a)
$$Ag^+ + e^- \rightarrow Ag(s)$$

1 mole of e =1 F = 96500 C =107.868 g Ag
?C = 1.0 g
C= 1 x 96500 / 107.868 = 894.61 C
2 mole of e = 2 F = 2 x 96500 C = 63.5 g
894.61 C = ? g
? G of Cu = 894.61 x 63.5 / 2x 96600
= 0.2948 g

b) $C = A x t_s$

 $894.61 = 1.0 \text{ x t}_{s}$

t = 894.615 s = 894.615 /60 = 14.9 min