

Electrochemistry

 Chapter 19Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemical processes are oxidation-reduction reactions in which:

- the energy released by a spontaneous reaction is converted to electricity or
- electrical energy is used to cause a nonspontaneous reaction to occur

$$
\stackrel{0}{\mathrm{Mg}}(s)+{\stackrel{0}{\mathrm{O}_{2}}(g) \longrightarrow \stackrel{2+2-}{\mathrm{M} g \mathrm{O}^{2-}}(s) .}^{(s)}
$$

$2 \mathrm{Mg} \longrightarrow 2 \mathrm{Mg}^{2+}+4 \mathrm{e}^{-} \quad$ Oxidation half-reaction (lose e^{-})
$\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{2-} \quad$ Reduction half-reaction (gain e^{-})

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

$$
\mathrm{Na}, \mathrm{Be}, \mathrm{~K}, \mathrm{~Pb}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}=0
$$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

$$
\mathrm{Li}^{+}, \mathrm{Li}=+1 ; \mathrm{Fe}^{3+}, \mathrm{Fe}=+3 ; \mathrm{O}^{2-}, \mathrm{O}=-2
$$

3. The oxidation number of oxygen is usually -2. In $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ it is -1.
4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is $-1 . \quad \mathrm{Na}^{+1} \mathrm{H}^{-1}=0 \quad \mathrm{Ca}^{2+} \mathrm{H}_{2}^{-1}=0$
5. Group IA metals are +1 , IIA metals are +2 and fluorine is always -1 .
6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion. $\mathrm{CO}_{2} \mathrm{C}+2 \mathrm{x}-2=0$

$$
\mathrm{C}-4=0 ; \mathrm{C}=+4 \quad \mathrm{HCO}_{3}^{-}
$$

Oxidation numbers of all the atoms in HCO_{3}^{-}?
$\mathrm{CH}_{3} \mathrm{COOH}$
$2 C+4 x 1++2 x-2=0$
$2 C+4-4=0$
$2 C=0 ; C=0 / 2=$

$$
\begin{aligned}
& \mathrm{O}=-2 \quad \mathrm{H}=+1 \\
& 3 \times(-2)+1+?=-1
\end{aligned}
$$

$$
C=+4
$$

Balancing Redox Equations

The oxidation of Fe^{2+} to Fe^{3+} by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid solution?

1. Write the unbalanced equation for the reaction in ionic form.
$\dot{\mathrm{Fe}} \mathrm{Cl}_{2}$
$\mathrm{Fe}+2 \mathrm{x}-1=0 \quad \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}$
$\mathrm{Fe}=2+$
2. Separate the equation into two half-reactions.
$2 \mathrm{Cr}+7 \mathrm{x}-2=2-$
$2 \mathrm{Cr}-14=-2$
$\mathrm{Cr}=+12 / 2=+6$
3. Balance the atoms other than O and H in each half-reaction.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}
$$

Balancing Redox Equations

4. For reactions in acid, add $\mathrm{H}_{2} \mathrm{O}$ to balance O atoms and H^{+}to balance H atoms.

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& 14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

5. Add electrons to one side of each half-reaction to balance the charges on the half-reaction.

$$
\begin{aligned}
\mathrm{Fe}^{2+} & \longrightarrow \mathrm{Fe}^{3+}+1 \mathrm{Ce}^{-} \\
\left(6 \mathrm{C}^{2+}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right. & \longrightarrow \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

6. If necessary, equalize the number of electrons in the two halfreactions by multiplying the half-reactions by appropriate coefficients.

$$
\begin{aligned}
6 \mathrm{Fe}^{2+} & \longrightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-} \\
6 \mathrm{e}^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Balancing Redox Equations

7. Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel.

$$
\begin{aligned}
& \text { Oxidation: } \quad 6 \mathrm{Fe}^{2+} \longrightarrow 6 \mathrm{Fe}^{3+}+8 \mathrm{C}^{-} \\
& \text {Reduction: } 6 \mathrm{CE}^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& \hline 14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+} \longrightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

8. Verify that the number of atoms and the charges are balanced.

$$
14 \times 1-2+6 x 2=24=6 \times 3+2 \times 3
$$

9. For reactions in basic solutions, add OH^{-}to both sides of the equation for every H^{+}that appears in the final equation.

Galvanic Cells

Galvanic Cells

$\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathbf{2} e^{-}$

Galvanic Cells

$\mathbf{Z n}$ is oxidized to Zn^{2+} at anode.
$\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-}$

Galvanic Cells

Zn is oxidized to Zn^{2+} at anode.
$\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-}$

Galvanic Cells

Galvanic Cells

Anode - electrode at which oxidation occurs
Cathode - electrode at which reduction occurs
Electrons always flow from anode to cathode
Salt bridge - tube that contains an electrolytes, maintains charge neutrality for a voltaic cell

Galvanic Cells

The difference in electrical potential between the anode and cathode is called:

- cell voltage
- electromotive force (emf)

- cell potential

Cell Diagram

$$
\begin{gathered}
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(\mathrm{aq}) \\
{\left[\mathrm{Cu}^{2+}\right]=1 \mathrm{M} \mathrm{\&}\left[\mathrm{Zn}^{2+}\right]=1 \mathrm{M}} \\
\mathrm{Zn}(s)\left|\mathrm{Zn}^{2+}(1 \mathrm{M}) \| \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}(s) \\
\text { anode }
\end{gathered}
$$

Standard Electrode Potentials

Standard reduction potential $\left(E^{0}\right)$ is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.

$$
\leftarrow \mathrm{H}_{2} \text { gas at } 1 \mathrm{~atm}
$$

Reduction Reaction

$$
\begin{gathered}
2 \mathrm{e}^{-}+2 \mathrm{H}^{+}(1 \mathrm{M}) \longrightarrow \mathrm{H}_{2}(1 \mathrm{~atm}) \\
E^{0}=0 \mathrm{~V}
\end{gathered}
$$

Standard Electrode Potentials

$1 \mathrm{M} \mathrm{ZSO}_{4}$
Zinc
electrode

$1 M \mathrm{HCl}$ Pt electrode

Hydrogen
electrode
$\mathrm{Zn}(s)\left|\mathrm{Zn}^{2+}(1 \mathrm{M})\right|\left|\mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H}_{2}(1 \mathrm{~atm}) \mid \mathrm{Pt}(\mathrm{s})$
Anode (oxidation): $\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+2 \mathrm{e}^{-}$

Cathode (reduction): $2 \mathrm{e}^{-}+2 \mathrm{H}^{+}(1 \mathrm{M}) \longrightarrow \mathrm{H}_{2}(1 \mathrm{~atm})$

$$
\mathrm{Zn}(s)+2 \mathrm{H}^{+}(1 \mathrm{M}) \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}(1 \mathrm{~atm})
$$

Standard Electrode Potentials

Standard Electrode Potentials

$$
E_{c e l l}^{o}=0.34 \mathrm{~V}
$$

$\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{H}^{+}(1 \mathrm{M})| | \mathrm{Cu}^{2+}(1 \mathrm{M}) \mid \mathrm{Cu}(\mathrm{s})$
Anode (oxidation):
$\mathrm{H}_{2}(1 \mathrm{~atm}) \longrightarrow 2 \mathrm{H}^{+}(1 \mathrm{M})+2 \mathrm{e}^{-}$
Cathode (reduction): $2 \mathrm{e}^{-}+\mathrm{Cu}^{2+}(1 \mathrm{M}) \longrightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{H}_{2}(1 \mathrm{~atm})+\mathrm{Cu}^{2+}(1 \mathrm{M}) \longrightarrow \mathrm{Cu}(\mathrm{s})+2 \mathrm{H}^{+}(1 \mathrm{M})$

- E^{0} is for the reaction as written
- The more positive E^{0} the greater the tendency for the substance to be reduced
- The half-cell reactions are reversible
- The sign of E^{0} changes when the reaction is reversed
- Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E^{0}

1Example 6.1 What is the standard emf of an electrochemical cell made of a Cd electrode in a $1.0 \mathrm{MCd}\left(\mathrm{NO}_{3}\right)_{2}$ solution and a Cr electrode in a $1.0 \mathrm{M} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ solution?
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e} \longrightarrow \mathrm{Cd}(s) \quad E^{0}=-0.40 \mathrm{~V} \quad \mathrm{Cd}$ is the stronger oxidizer $\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}(\mathrm{s}) \quad E^{0}=-0.74 \mathrm{~V} \quad \mathrm{Cd}$ will oxidize Cr Anode (oxidation): $\mathrm{Cr}(\mathrm{s}) \longrightarrow \mathrm{Cr}^{3+}(1 \mathrm{M})+3 \mathrm{e} \times 2$ Cathode (reduction): (2e) $+\mathrm{Cd}^{2+}(1 \mathrm{M}) \longrightarrow \mathrm{Cd}(\mathrm{s}) \times 3$

$$
\begin{aligned}
2 \mathrm{Cr}(s)+3 \mathrm{Cd}^{2+}(1 M) & \longrightarrow 3 \mathrm{Cd}(s)+ \\
E_{\text {cell }}^{0} & =E_{\text {cathode }}^{0}-E_{\text {anode }}^{0} \\
E_{\text {cell }}^{0} & =0.40-(-0.74) \\
E_{\text {cell }}^{0} & =0.34 \mathrm{~V}
\end{aligned}
$$

Example 6.2: Use electrode potential to determine whether the following proposed reactions are spontaneous with all substances present at unit activity:
a) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s})$
b) $2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
a) Fist we have to see who is reduced and who is oxidized . Cl_{2} is reduced

1 - is oxidized
Cathode
Anode reactor

$$
\mathrm{Cl}_{2}+2 \mathrm{e}-\rightarrow 2 \mathrm{Cl}^{-} \mathrm{E}_{\mathrm{Cl} / \mathrm{Cl}}^{\circ}=+1.36 \mathrm{~V} \quad 2 \mathrm{l}^{-} \rightarrow \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{\circ}{ }_{1 / / \mathrm{I}}^{-}=+0.536 \mathrm{~V}
$$

Cell reaction $\quad \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}^{2}(\mathrm{~s})+2 \mathrm{Cl}(\mathrm{aq})$,

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{\circ} \\
& \mathrm{E}_{\text {cell }}^{\circ}=+1.36-0.536=+0.824 \mathrm{~V}
\end{aligned}
$$

Since $\mathrm{E}^{\circ}{ }_{\text {cell }}$ is +ve the reaction is spontaneous
b) $2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
H^{+}is reduced
Cathode reaction:
$2 \mathrm{H}^{+}+2 \mathrm{e}-\rightarrow \mathrm{H}_{2}(\mathrm{~g}) \mathrm{E}^{\circ}=0.00 \mathrm{~V}$

Ag is oxidized
Anode reaction:

$$
\begin{gathered}
2 \mathrm{Ag}+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}^{\circ}{ }_{\text {anode }} \\
\mathrm{E}_{\text {cell }}^{\circ}=0.0-0.799=-0.799 \mathrm{~V}
\end{gathered}
$$

The result is nonspontaneous, $\quad \mathrm{E}^{\circ}{ }_{\text {cell }}=-\mathrm{ve}$

Spontaneity of Redox Reactions

$\Delta G=-n F E_{\text {cell }} \quad n=$ number of moles of electrons in reaction
$\Delta \mathrm{G}^{0}=-n F E_{\text {cell }}^{0} \quad F=96,500 \frac{\mathrm{~J}}{\mathrm{~V} \cdot \mathrm{~mol}}=96,500 \mathrm{C} / \mathrm{mol}$
$\Delta \mathrm{G}^{0}=-R T \ln K=-n F E_{\text {cell }}^{0}$

$$
E_{\text {cell }}^{0}=\frac{0.0257 \mathrm{~V}}{n} \ln K
$$

Spontaneity of Redox Reactions

Relationships among $\Delta \mathbf{G}^{\circ}, K$, and $E_{\text {cell }}^{\circ}$

$\boldsymbol{\Delta} \boldsymbol{G}^{\circ}$	\boldsymbol{K}	$\boldsymbol{E}_{\text {cell }}^{\circ}$	Reaction under Standard-State Conditions
Negative	>1	Positive	Favors formation of products.
0	$=1$	0	Reactants and products are equally favored.
Positive	<1	Negative	Favors formation of reactants.

Example 6.3 What is the equilibrium constant for the following reaction at $25^{\circ} \mathrm{C} ? \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(s) \rightleftarrows \mathrm{Fe}(s)+2 \mathrm{Ag}^{+}(a q)$

$$
E_{\text {cell }}^{0}=\frac{0.0257 \mathrm{~V}}{n} \ln K
$$

Oxidation: $\quad 2 \mathrm{Ag} \longrightarrow 2 \mathrm{Ag}^{+}+20$
Reduction: $2 \mathrm{C}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe} \quad n=2$

$$
\begin{aligned}
& E^{0}=E_{F e^{2+/ F e}}^{0}-E_{A g^{+} / A g}^{0} \\
& E^{0}=-0.44-(0.80) \\
& E^{0}=-1.24 \mathrm{~V}
\end{aligned}
$$

$$
K=\exp \left[\frac{E_{c e l l}^{0} \times n}{0.0257 \mathrm{~V}}\right]=\exp \left[\frac{-1.24 \mathrm{~V} \times 2}{0.0257 \mathrm{~V}}\right]
$$

$$
K=1.23 \times 10^{-42}
$$

Example 6.4: a) Use electrochemical data to calculate the value of $\Delta \mathrm{G}^{\circ}$ for the reaction $2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AgCl}(\mathrm{s})$
b) If $\Delta \mathrm{H}^{\circ}=-254.0 \mathrm{~K}_{\mathrm{S}}$, calculate $\Delta \mathrm{S}^{\circ}$
a) We have to calculate $\mathrm{E}^{\circ}{ }_{\text {cell }}$ from the two half cell reactions.

Anode reaction:

$$
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag} \mathrm{Cl}(\mathrm{~s})+2 \mathrm{e}^{-} \quad \mathrm{E}^{\circ}{ }_{\mathrm{Ag}+/ \mathrm{Ag}}=+0.222 \mathrm{~V}
$$

Cathode reaction:

$$
\begin{aligned}
& 2 \mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad, \quad \mathrm{E}^{\circ} \mathrm{Cl/Cl}^{-}=+1.369 \mathrm{~V} \\
& \begin{array}{l}
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag} \\
\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\mathrm{Cl} / \mathrm{Cl}^{-}-\mathrm{E}^{\circ}{ }_{\mathrm{Ag}+/ \mathrm{Ag}}}
\end{array} \\
& \mathrm{E}_{\text {cell }}^{\circ}=+1.369-0.222=1.137 \mathrm{~V} \\
& \Delta G^{\circ}=-n f E^{\circ}{ }_{\text {cell }} \\
& =-2 \times 96500 \times 1.137 \mathrm{~J} \\
& =-219.4 \mathrm{~kJ}
\end{aligned}
$$

b) $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$-219.4 \times 1000 \mathrm{~J}=-254.0 \times 1000 \mathrm{~J}-298 \Delta \mathrm{SJ} / \mathrm{K}$

$$
\begin{aligned}
\Delta \mathrm{S}^{\circ} & =-\frac{(254.0-219.4) 1000 \mathrm{~J}}{298 \mathrm{~K}} \\
& =-116 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Example 6.5: Use electrochemical data to calculate the equilibrium constant K for the following reaction at $25^{\circ} \mathrm{C}$

$$
\mathrm{Fe}^{++}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{+++}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})
$$

$$
\begin{array}{lr}
\mathrm{Fe}^{++}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{+++}(\mathrm{aq})+\mathrm{e}^{-} & E_{\mathrm{Fe} 3+/ \mathrm{Fe} 2+}^{o}=+0.771 \mathrm{~V} \\
\mathrm{e}^{-+} \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ag}(\mathrm{~s}) & E_{\mathrm{Ag}+\mathrm{g}}^{o}=0.799 \mathrm{~V}
\end{array}
$$

$$
\begin{aligned}
& n=1, \mathrm{~T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}, \mathrm{~F}=96500 \\
& E_{{ }_{\text {celf }} / E^{\circ} E_{\text {cath }}^{\circ}-E^{\circ}{ }_{\text {anode }}}^{E^{0}=0.799-0.771} \quad E_{\text {cell }}^{o}=-(\mathrm{RT} / \mathrm{nF}) \ln \mathrm{K} \\
& E^{0}=0.028 \mathrm{~V} \quad \therefore \quad 0.028=-(8.314 \times 298 / 1 \times 96500) \ln \mathrm{K}
\end{aligned}
$$

$$
\therefore \mathrm{K}=2.98
$$

The Effect of Concentration on Cell Emf

$$
\begin{gathered}
\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+R T \ln Q \quad \Delta \mathrm{G}=-n F E \quad \Delta \mathrm{G}^{0}=-n F E^{0} \\
-n F E=-n F E^{0}+R T \ln Q
\end{gathered}
$$

Nernst equation

$$
E=E^{0}-\frac{R T}{n F} \ln Q
$$

At 298

$$
E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q
$$

Ex 6.6 Will the following reaction occur spontaneously at $25^{\circ} \mathrm{C}$ if $\left[\mathrm{Fe}^{2+}\right]=0.60 \mathrm{M}$ and $\left[\mathrm{Cd}^{2+}\right]=0.010 \mathrm{M}$?
$\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}(s) \rightleftarrows \mathrm{Fe}(s)+\mathrm{Cd}^{2+}(\mathrm{aq})$
Oxidation:

$$
\mathrm{Cd} \longrightarrow \mathrm{Cd}^{2+}+2 \mathrm{e}
$$

Reduction: $2 \mathrm{e}+\mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{Fe}$
$E^{0}=E_{F e^{2+}+F e}^{0}-E_{C d^{2++} / C d}^{0}$
$\begin{array}{ll}E^{0}=-0.44-(-0.40) \\ E^{0}=-0.04 \mathrm{~V}\end{array} \quad E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q$
$E=-0.04 \vee-\frac{0.0257 \mathrm{~V}}{2} \ln \frac{0.010}{0.60}$
$E=0.013$
$E>0 \quad$ Spontaneous

Example 6.7: What is the electrode potential of $\mathrm{Zn}^{++} \mathrm{Zn}$ electrode in which the concentration of $\mathrm{Zn}^{++}=0.1 \mathrm{M}$.

$$
\mathrm{Zn}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}, \mathrm{E}^{\circ}=-0.76 \mathrm{~V}
$$

At 298

$$
\begin{aligned}
& E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q \\
E= & -0.76-(0.0257 / 2 \ln (1 / 0.1) \\
= & -0.79 \mathrm{~V}
\end{aligned}
$$

Example 6.8: What is the potential for the cell : $\left.\mathrm{Ni} / \mathrm{Ni}^{++}(0.01 \mathrm{M}) / / \mathrm{Cl}-(0.2 \mathrm{M}) / \mathrm{Cl}_{2} \mathrm{M}\right) / \mathrm{Pt}$

$$
\begin{aligned}
& \mathrm{Ni} \rightarrow \mathrm{Ni}_{\mathrm{i}}^{++}+2 \mathrm{e}^{-} \quad \mathrm{E}^{\circ}{ }_{\mathrm{Ni} 2+/ \mathrm{Ni}=-}=0.25 \mathrm{~V} \\
& 2 \mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-} \quad \mathrm{E}_{\circ} \mathrm{Cl/Cl}=1.36 \mathrm{~V} \\
& 2 \mathrm{Ni}^{+} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ni}^{++}(\mathrm{aq}) \\
& \mathrm{E}_{\text {cell }}^{\circ}=1.36-(-0.25)=1.61 \mathrm{~V}
\end{aligned}
$$

$$
E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q
$$

$$
\mathrm{Q}=\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{Ni}^{++}\right] / \mathrm{P}_{\mathrm{Cl} 2}=((0.2) 2(0.01) / 1=0.0004
$$

$$
\begin{aligned}
E & =1.61-[(0.0257 / 2) \times 0.0004] \\
& =1.71 \mathrm{~V}
\end{aligned}
$$

Example 6.9: Consider a cell reaction
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{++}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}), \quad \mathrm{E}_{\text {cell }}^{\circ}=2.363 \mathrm{~V}$
What is the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ in a cell in which $\left[\mathrm{Mg}^{++}\right]=$ 1.00 M and $\mathrm{P}_{\mathrm{H} 2}=1.0 \mathrm{~atm}$, if the Ecell $=2.099 \mathrm{~V}$?

$$
\begin{aligned}
& \text { At } 298: E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q \\
& n=2 \\
& \begin{array}{c}
\mathrm{Q}=\left(\mathrm{Mg}^{+2}\right) \mathrm{P}_{\mathrm{H} 2} /\left(\mathrm{H}^{+}\right)^{2}=(1)(1) /\left(\mathrm{H}^{+}\right)^{2} \\
2.099=2.363-(0.0257 / 2) \ln \left(1 /\left(\mathrm{H}^{+}\right)^{2}\right) \\
2.099-2.363=-0.0128 \ln \left[\mathrm{H}^{+}\right]^{-2}
\end{array}
\end{aligned}
$$

$\ln \left[\mathrm{H}^{+}\right]^{-2}=20.625$
$\left[\mathrm{H}^{+}\right]^{-2}=906407915.01$
$\left[\mathrm{H}^{+}\right]=3.3 \times 10^{-5} \mathrm{M}$

Concentration cell : two half-cells composed of the same material but differing in ion concentrations

High concentration $=$ reduction , low concentration = oxidation
Example 6.10: What is the E for the cell : $\mathrm{Cu} / \mathrm{Cu}^{++}(0.01 \mathrm{M}) / / \mathrm{Cu}^{++}$(0.1 M) / Cu .

$$
\mathrm{Cu}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{E}^{\circ}=-0.34 \mathrm{~V}
$$

$$
\mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\text {cathode }}^{0}-\mathrm{E}_{\text {anode }}^{0}
$$

$$
E^{0} \text { cell }=-0.34-(-0.34)=0.0 \mathrm{~V}
$$

$E=E^{0}-\frac{0.0257 \mathrm{~V}}{n} \ln Q$
$E=0.0-(0.0257 / 2) \ln (0.01 / 0.1)=-0.0296 \mathrm{~V}$

Electrolysis is the process in which electrical energy is used to cause a nonspontaneous chemical reaction to occur. -In electrolytic solution, the charge is carried by ions. -lons must be free to move.
-Occurs at molten salts or aqueous solutions of electrolyte.

Electrolysis of molten NaCl

Cathode reaction $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$

Always reduction occurs at the cathode

Anode reaction
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
Always oxidization occurs at the anode

Anode (oxidation):
Cathode (reduction):
$2 \mathrm{Cl}^{-}(\mathrm{l}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 e^{-}$
$2 \mathrm{Na}^{+}(l)+2 e^{-} \longrightarrow 2 \mathrm{Na}(l)$
Overall: $2 \mathrm{Na}^{+}(l)+2 \mathrm{Cl}^{-}(l) \longrightarrow 2 \mathrm{Na}(l)+\mathrm{Cl}_{2}(g)$

Electrolysis and Mass Changes

$$
1 \text { mole } \mathrm{e}^{-}=96,500 \mathrm{C}
$$

Ex 6.11:How much Ca will be produced in an electrolytic cell of molten CaCl_{2} if a current of 0.452 A is passed through the cell for 1.5 hours?

Anode:

$$
2 \mathrm{Cl}^{-}(I) \longrightarrow \mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-}
$$

Cathode:

$$
\mathrm{Ca}^{2+}(1)+2 \mathrm{Ca}_{(s)} \longrightarrow \mathrm{Ca}
$$

$$
\mathrm{Ca}^{2+}(\Lambda)+2 \mathrm{Cl}^{-}(\Lambda) \longrightarrow \mathrm{Ca}(s)+\mathrm{Cl}_{2}(g)
$$

2 mole $\mathrm{e}^{-}=1$ mole Ca
$96500=1 \mathrm{~mol} e$, So 2 moles of electrons requires $=2 x 96500$

$$
\begin{aligned}
& \mathrm{Q}=l \times t=0.452 \times 1.5 \times 3600=2440 \mathrm{C} \\
& 193000 \mathrm{C}=1 \mathrm{~mole} \mathrm{Ca} \\
& 2440 \mathrm{C}=\mathrm{x} \\
& X=2440 \times 1 / 193000=0.0126 \mathrm{~mol} \mathrm{Ca} \\
& \text { Mass }=0.0126 \times 40=0.5 \mathrm{~g} \mathrm{Ca}
\end{aligned}
$$

Example 6.12:a) In the electrolysis of CuSO_{4}, How much copper is plated out on the cathode by a current of 0.75 A in 10 min ?
b) What the volume of $\mathrm{O}_{2}(\mathrm{~g})$ at STP is liberated ?

$$
\text { a) } \begin{aligned}
\mathrm{C}= & \mathrm{A} \times \mathrm{t}(\mathrm{~s})=0.75 \times 10 \times 60=450 \mathrm{C} \\
& \mathrm{Cu}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
\end{aligned}
$$

From the equation we have:

$$
\begin{gathered}
2 \mathrm{~F}=2 \times 96500 \mathrm{C} \equiv 1 \mathrm{~mol} \mathrm{Cu}=63.5 \mathrm{~g} \mathrm{Cu} \\
450 \mathrm{C}=====\rightarrow ? \mathrm{~g} \text { of } \mathrm{Cu} \\
? \mathrm{~g} \text { of } \mathrm{Cu}=450 \times 63.5 \mathrm{~g} / 2 \times 96500=0.148 \mathrm{~g} \mathrm{Cu}
\end{gathered}
$$

b) $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$4 \mathrm{~F} \equiv 4 \times 96500 \mathrm{C}=1 \mathrm{~mole}_{2} \equiv 24.5 \mathrm{~L}$
450C \rightarrow ? L

$$
\begin{aligned}
? \mathrm{~L} & =450 \times 24.5 / 4 \times 96500 \\
& =2.83 \times 10^{-2} \mathrm{~L} \mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

Example 6.13: a) What mass of copper is plated in the electrolysis of CuSO_{4} in the same time 1.0 g of Ag is plated in a silver coulometer that arranged in series with CuSO_{4} cell ? b) If 1.0 A is passed, how many minutes are required to plate this quantity?

$$
\begin{aligned}
& \text { a) } \mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \\
& 1 \text { mole of e }=1 \mathrm{~F} \equiv 96500 \mathrm{C} \equiv 107.868 \mathrm{~g} \mathrm{Ag} \\
& \text { ? } \mathrm{C} \equiv 1.0 \mathrm{~g} \\
& \mathrm{C}=1 \times 96500 / 107.868=894.61 \mathrm{C} \\
& \mathrm{Cu}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \\
& \begin{aligned}
2 \text { mole of } \mathrm{e}=2 \mathrm{~F}=2 \times 96500 \mathrm{C} & =63.5 \mathrm{~g} \\
894.61 \mathrm{C} & =? \mathrm{~g}
\end{aligned} \\
& \text { ? } \mathrm{G} \text { of } \mathrm{Cu}=894.61 \times 63.5 / 2 \times 96600 \\
& =0.2948 \mathrm{~g} \\
& \text { b) } C=A x t_{s} \\
& 894.61=1.0 \times \mathrm{t}_{\mathrm{s}} \\
& \mathrm{t}=894.615 \mathrm{~s}=894.615 / 60=14.9 \mathrm{~min}
\end{aligned}
$$

